POWER METER PW3336, PW3337

High-precision, 3-channel power meter with built-in harmonic measurement Accurately measure devices up to 1000 V/65 A AC/DC with direct input

HIOKI

The PW3336 (2-channel) and PW3337 (3-channel) can measure DC and a variety of power connections ranging from single-phase 2-wire to 3-phase 4-wire*.

- For development and production of motors, inverters, power conditioners, power supplies, and other devices
- Assess and verify the energy-saving performance of industrial equipment such as heavy machinery, airconditioners as well as household appliances

Voltage, current, and power basic accuracy	: ±0.1% **
Measurement frequency bands	: DC, 0.1 Hz to 100 kHz
High-current measurement	: Up to 65 A, direct input
Low-loss current input	: Input resistance of $1m\Omega$ or less
Harmonic measurement up to the 50th order	: IEC 61000-4-7 compliant
High-accuracy measurement, even with a low power factor	: Ideal for no-load testing of transformers and motors
• Measure up to 5000 A AC	Built in ovtornal concor input torminals

High-accuracy **High-current** Harmonic measurement

Support for development and production of motors, transformers, air-conditioners, and other industrial equipment

The PW3336 series (2-channel) and PW3337 series (3-channel) are easy-to-use, high-accuracy power meters that deliver current measurement of up to 65 A with direct input as well as built-in harmonic analysis functionality, all with accuracy that exceeds that of previous HIOKI power meters.

World class performance

Measure up to 65 A with direct input

5000A

Measurement accuracy that remains unchanged for high-current measurement

Accuracy is guaranteed for currents of up to 65 A with direct input. The power meters can also measure high currents in excess of 65 A with optional current sensors. Direct-input power meters typically exhibit degraded accuracy when inputting high currents due to shunt resistor self-heating. However, the PW3336 and PW3337 reduce input resistance with a DCCT design that virtually eliminates this type of accuracy degradation.

65A 2mA **Direct input** Sensor input

A 3-channel power meter

Enabling you to select the optimal range for each connection The advanced engineering of the PW3336 and PW3337 enables you to measure an inverter's primary-side DC power supply and its secondary-side 3-phase output at the same time. The power meters make a tremendous contribution in applications that need to measure the input/output efficiency of inverters, uninterruptible power supplies, and other power supply equipment.

Best-in-class accuracy of ±0.1% *

Highest basic accuracy and DC accuracy of any instrument in its class

Thanks to Hioki's accumulated technology and track record, the PW3336/PW3337 delivers the highest basic accuracy and DC accuracy of any instrument in its class. Reliable measurement accuracy ensures robust performance in customers' measurement applications.

* For complete details, please refer to the specifications

Simultaneously measure power consumption and all harmonic parameters, from single-phase 2-wire to 3-phase 4-wire measurement lines

2ch

PW3336 series (2-channel models) Measurement lines: 1P2W/1P3W/3P3W

World class performance

4 Simultaneous processing of power data and all harmonic data

All data, including RMS values, mean values, DC components, AC components, fundamental wave components, harmonic measurement, and integration measurement, is processed in parallel internally. There is no need to switch modes depending on whether you wish to acquire power data or harmonic data - simply switch the display to obtain measured values with true simultaneity. Additionally, PC communications software can be used to capture measurement data, including from multiple synchronized instruments.

Wide frequency band of DC and 0.1 Hz to 100 kHz

Thanks to a wide-band capability extending from DC and 0.1 Hz to 100 kHz, the PW3336/PW3337 can cover not only inverters' fundamental frequency band, but also the carrier frequency band.

PW3337 series (3-channel models) Measurement lines: 1P2W/1P3W/3P3W/3P4W

High-accuracy measurement, even with lowpower-factor input

Because power factor has little impact at just $\pm 0.1\%$ f.s., the PW3336/PW3337 can measure active power of low-power-factor input at a high level of accuracy, for example during no-load-loss testing, a technique that is used to evaluate energy-saving performance of transformers.

Even though the high current waveform crest factor that typically accompanies no-load operation causes the power factor to deteriorate, measurements taken with the PW3336/PW3337 series remain accurate under these conditions.

Integrating fluctuating power values

The power consumption of equipment subject to a fluctuating load, for example refrigerators, heaters, and pumps, varies considerably between rated operation and no-load operation. Thanks to its broad dynamic range, the PW3336/PW3337 can perform integrated power measurement with guaranteed accuracy using a single range, even if the power fluctuates dramatically during integration. Measurements can accommodate waveform peaks of up to 600% of the range rating.

Advanced functions

Extensive built-in features including harmonic measurement, current sensor input, synchronized control, and a wide selection of interfaces

The PW3336/PW3337 ships standard with all the functionality you need for measurement. Choose from a total of eight models depending on whether your application requires support for GP-IB communications and D/A output.

Standard functionality by model						• : Built-in function	on not available	
Model	No. of channels	Harmonic measurement	Current sensor input	Synchronized control	LAN	RS-232C	GP-IB	D/A output
PW3336		•	•	•	•	•	—	—
PW3336-01	2	•	•	•	•	•	•	
PW3336-02		•	•	•	•		—	•
PW3336-03		•	•	•	•	•	•	•
PW3337		•	•	•	•		_	—
PW3337-01	2	•	•	•	•	•	•	—
PW3337-02	3	•	•	•	•	•	_	•
PW3337-03		٠	•	•	•	•	•	•

IEC61000-4-7 compliant harmonic measurement

The PW3336/PW3337 supports measurement that complies with IEC 61000-4-7:2002, the international standard governing harmonic measurement.

The power meters can measure voltage, current, and power harmonics up to the 50th order depending on the fundamental frequency, including total harmonic distortion (THD), fundamental wave component, harmonic level, phase difference, content percentage, and other parameters for each order. Since you can cap the number of orders for which harmonic analysis is performed to any order from the 2nd to the 50th, you can make standard-compliant calculations, even if the standard defines an upper limit order for THD calculations.

LT About IEC 61000-4-7

IEC 61000-4-7 is an international standard governing the measurement of harmonic current and harmonic voltage in power supply systems as well as harmonic current emitted from devices. It defines the performance of standard instruments used to make such measurements.

4 16-channel D/A output (-02, -03)

D/A output-equipped instruments can generate voltage output for measured values and integrated power with their 16-bit D/A converter. By connecting an external data logger, HIOKI Memory HiCorder, recorder, or other device, you can simultaneously record data along with temperature and other non-power signals. The PW3336/PW3337 also offers the first active power level output on a cycle-by-cycle basis of any instrument in its class.

speed: Approx. 87.5 kHz)

Level output

Output voltage, current, power, and other selected parameters with an update cycle of approximately 200 ms.

High-speed active power level output

Generate level output for the active power for each cycle of the measurement waveform.

Large selection of interfaces

/LAN

The PW3336/PW3337's interfaces can be used to control the instrument and to capture its data - simply download the free PC application from the HIOKI website. Functionality supported via LAN connections includes power meter configuration, measured value monitoring, waveform monitoring, display of time-series recordings, and capturing data at intervals.

PW3336-03 PW3337-03

Synchronized control using up to 8 instruments

/GP-IB/

Eight units of PW3336/PW3337 can be connected and their measurements fully synchronized. That means you can have up to 24 channels of simultaneous calculations, display updates, data updates, integration control, display hold timing, and zero-adjustment. In addition, the master-slave configuration allows you to key lock all slave devices with the master unit, mirroring the master unit's operations and modes on all of the other power meters. The free PC application can be used to calculate efficiency values across multiple units.

Current sensor connectivity

The PW3336/PW3337 can also measure devices that exceed 65 A with the use of an optional current sensor. Measurements with guaranteed accuracy can be performed for currents of up to 5000 A AC. Choose from a range of high-accuracy, clamp or pass-through AC/DC current sensors and models specifically designed for 50/60 Hz measurement.

Applications

Research, development, and testing of equipment with 3-phase power supplies such as transformers, motors, air-conditioners, and heavy machinery

Key advantages

- ✓ Measure 3-phase 3-wire and 3-phase 4-wire* lines with a basic measurement accuracy of ±0.1%**
- Perform high-current measurement of 65 A with direct input without accuracy degradation caused by shunt resistor self-heating.
- V Built-in IEC 61000-4-7 compliant harmonic measurement functionality as well as current sensor input terminals and a LAN interface.
- Accuracy is guaranteed for active power measurement from 0 W, as well as for measurement of integrated power for loads with large fluctuations.
- Measure active power at a high level of accuracy even with low power factors, for example during no-load operation testing of transformers.

*3-phase 4-wire measurement: PW3337 series only ** For complete details, please refer to the specifications

Measuring the efficiency of power conditioners used in solar power installations

Key advantages

- ✓ Measure primary-side DC and secondary-side 3-phase output with a single PW3337, using the optimal range for each.
- Calculate efficiency: Perform output/input calculations and easily identify the resulting efficiency on the power meter's screen.
- ✓ Ripple rate calculation: Display the ratio of the AC component that is superposed on a DC line.
- ✓ Built-in current sensor input terminals: Measure currents exceeding 65 A with an optional current sensor.
- Harmonic measurement: Test for harmonic components such as voltage THD, which can be a concern with grid-linked systems.

Measuring power supply devices such as 3-phase/3-phase inverters

Key advantages

- Connect multiple instruments to synchronize their operation, including display updates, data updates, and start of integration.
- Measure all data with simultaneous parallel processing, including RMS values, mean values, fundamental wave components, THD, and harmonic components.
- ✓ Wide frequency band from DC and 0.1 Hz to 100 kHz: Enjoy coverage for the inverter secondary-side frequency band.
- ✓ Built-in current sensor input terminals: Measure currents exceeding 65 A with an optional current sensor.

Applications

Measuring the primary-side, internal circuitry, and secondary-side power consumption in uninterruptible power supplies (UPS)

Key advantages

- ✓ Set individual ranges and measurement types for each channel. Measure power consumption at each stage of the UPS.
- Hold waveform peak values and measured value maximum and minimum values.
- Measure all data with simultaneous parallel processing, including RMS values, mean values, fundamental wave components, THD, and harmonic components.

Simultaneous measurement of multiple loads

Key advantages

- Set individual ranges and measurement types for each channel. Measure power consumption at each stage of an uninterruptible power supply.
- Perform integrated measurement of widely fluctuating power signals without changing the range useful during long-term integrated power evaluation tests.
- ✓ Use the synchronized control function to sync measurement timing and start/stop integration across a maximum of 8 power meters.

PW3336/PW3337 Communicator

The PW3336/PW3337 Communicator connects with the power meters via the LAN, RS-232C, or GP-IB (-01, -03) interface, and is available for free download from the HIOKI website. Functionality includes configuring instruments, capturing interval data, performing numerical calculations based on measurement data, calculating efficiency values across multiple units, displaying 10 or more measurement parameters, and displaying waveforms.

LabVIEW Driver

Use LabVIEW* to collect data and integrate the power meter into existing systems. *LabVIEW is a trademark of National Instruments Corporation.

Dimensional drawings

(Unit: mm)

Specifications

Measurement	PW	/3336 series		Frequency bands	DC, 0.1 Hz to 100 kHz				
line type		Single-phase 2-wire (1F Single-phase 3-wire (1F Three-phase 3-wire (3P	2W), 23W), 3W, 3P3W2	Synchronization sources	U1, U2, U3, I1, I2, I3, I Can be set separately				
		Wiring	CH1	CH2]		measurement items	Voltage · Curi Reactive power · Pow	
		1P2W×2	1P2W	1P2W				· Efficiency · Cur	
		1P3W	1P;	3W				inte	
		3P3W	3P;	3W				Voltage waveform pe	
		3P3W2M	3P3\	W2M				Voltage crest factor Time average current	
	PW	/3337 series Single-phase 2-wire (1F Single-phase 3-wire (1F Three-phase 3-wire (3P Three-phase 4-wire (3P	22W), 23W), 3W, 3P3W2 4W)			· Voltage ripple factor Harmonic parameters · Harmonic voltage RI · Harmonic active pov · Total harmonic curre			
		Wiring	CH1	CH2	CH3]		Current fundamental	
		1P2W×3	1P2W	1P2W	1P2W			Apparent power fundame Power factor fundame	
		1P3W&1P2W	1P;	3W	1P2W			· Voltage current phase	
		3P3W&1P2W	3P:	3W	1P2W			· Interchannel voltage	
		3P3W2M	3P3\	N2M				Interchannel current	
		3V3A		3V3A		1		Harmonic active pow	
		3P3W3M		3P3W3M		1		The following paramet	
		3P4W		3P4W				communication but no	
Input methods	Vol	tage Isolated input, re	sistance vo		Harmonic voltage ph				
	Cu	rrent Isolated input, DC	CT method I	solated inp	ut from curre	ent sensors	Poctifiore		
Voltage measurement ranges	AU 100	TO/ 15.000 V/ 30.000 V 00.0 V (set for each wirin	// 60.000 V ng mode)	/ 150.00 V	/ 300.00 V,	/ 600.00 V/	nectiners	Display of true RM AC+DC Umn : AC+D	
Current measurement ranges	AUTO/ 200.00 mA/ 500.00 mA/ 1.0000 A/ 2.0000 A/ 5.0000 A s / 10.000 A/ 20.000 A/ 50.000 A (set for each wiring mode) For more information about external current sensor input, see the external current sensor input specifications						Display of average and true RMS value DC : DC m Display of simple a		
Power ranges	De PW PW	pends on the combinati /3336: from 3.0000W to /3337: from 3.0000W to	on of volta 100.00kW 150.00kW		for active power AC : AC me Display of values c				
Input resistance (50/60 Hz)	Vol Cu	tage input terminal rrent direct input termin	: 2 MΩ±0 al : 1 mΩ o	0.04 MΩ r less				Display of values c for active power	

Basic Measurement Specifications

Measurement method	Simultaneous voltage and current digital sampling, zero-cross simul- taneous calculation
Sampling frequency	Approx. 700 kHz
A/D converter	16-bit
resolution	

ricqueriey barius	
Synchronization sources	U1, U2, U3, I1, I2, I3, DC (fixed at 200 ms) Can be set separately for each wiring mode.
Measurement items	Voltage · Current · Reactive power · Power factor · Efficiency · Current · Voltage · Current · Voltage vaveform peak value · Voltage crest factor · Voltage crest factor · Voltage rest factor · Current rest factor · Current ripple factor · Voltage fundamental waveform · Voltage current distortion · Voltage current distortion · Voltage current fundamental waveform · Voltage current fundamental waveform · Nover factor fundamental waveform · Nover factor fundamental waveform · Nover factor fundamental waveform · Interchannel voltage fundamental wave power fundamental waveform · Interchannel voltage fundamental wave phase difference · Harmonic active power content % · Harmonic active power content % · Harmonic voltage phase angle · Harmonic voltage current phase difference · Harmonic voltage current phase difference
Rectifiers	AC+DC : AC+DC measurement Display of true RMS values for both voltage and current AC+DC Umn : AC+DC measurement Display of average value rectified RMS converted values for voltage and true RMS values for current DC : DC measurement Display of simple averages for both voltage and current Display of values calculated by (voltage DC value)x (current DC value) for active power AC : AC measurement Display of values calculated by for both voltage and current Display of values calculated by for both voltage and current Display of values calculated by for both voltage and current Display of values calculated by for both voltage and current Display of values calculated by for both voltage and current Display of values calculated by for both voltage and current Display of values calculated by for both voltage and current Display of values calculated by for both voltage and current Display of values calculated by for both voltage and current Display of values calculated by for both voltage and current Display of values calculated by for both voltage and current Display of values calculated by for both voltage and current Display of values calculated by for both voltage and current Display of values calculated by for both voltage and
Zero-Crossing Filter	500 Hz/200 kHz 500 Hz: 0.1 Hz to 500 Hz, 200 kHz: 0.1 Hz to 200 kHz
Maximum effective peak voltage	±600% of each voltage range However, for 300 V, 600 V, and 1000 V ranges, ±1500 Vpeak
Maximum effective peak current	±600% of each current range However, for 20 A range and 50 A range, ±100 Apeak

	-	-	
		٦	
. *	-		
۰.			

Measureme	nt accuracy										
Frogu	opov (f)	Ipput < E0% fo	E0%fo < lpp	t < 100% f o	100% for < loput						
Frequ		$\pm 0.1\%$ rdg $\pm 0.1\%$ fs	50%i.s. ≤ inpu	1< 100%1.S. ≠0.1%fs	100%1.8. ≤ Input						
0.1Hz <	f < 16Hz	+0.1%rdg. +0.2%f.s.	+0.3%	±0.1%1.5.	±0.2 %rdg.						
16Hz ≤	f < 45Hz	±0.1%rdg. ±0.1%f.s.	±0.2%	rdg.	±0.2%rdg.						
45Hz ≤	f ≤ 66Hz	±0.1%rdg. ±0.05%f.s.	±0.159	6rdg.	±0.15%rdg.						
66Hz <	$f \le 500Hz$	±0.1%rdg. ±0.1%f.s.	±0.2%	rdg.	±0.2%rdg.						
500Hz <	$f \le 10 \text{kHz}$	±0.1%rdg. ±0.2%f.s.	±0.3%	rdg.	±0.3%rdg.						
10kHz <	$t \le 50$ kHz	±0.5%rdg. ±0.3%f.s.	±0.8%	ordg.	±0.8%rdg.						
50kHz <	$f \le 100$ kHz	±2.1%rdg. ±0.3%t.s.	±2.4%	rag.	±2.4%rdg.						
		land 500/ for	500/6 - 1	4000/6-	4000/f =						
Frequ		10000 < 50% f.s.	50%1.S. ≤ Inpu	t < 100% f.s.	100%t.s. ≤ Input						
0.1Hz <	f < 16Hz	+0.1%rdg. +0.2%f.s.	+0.3%	rda.	+0.3%rdg.						
16Hz ≤	f < 45Hz	±0.1%rdg. ±0.1%f.s.	±0.2%	rdg.	±0.2%rdg.						
45Hz ≤	f ≤ 66Hz	±0.1%rdg. ±0.05%f.s.	±0.159	6rdg.	±0.15%rdg.						
66Hz <	$f \leq 500Hz$	±0.1%rdg. ±0.1%f.s.	±0.2%	rdg.	±0.2%rdg.						
500Hz <	< f ≤ 1kHz	±0.1%rdg. ±0.2%f.s.	±0.3%	rdg.	±0.3%rdg.						
1kHz <	$f \le 10$ kHz	±(0.03+0.07×F)%rdg. ±0.2%f.s.	±(0.23+0.07	/xF)%rdg.	±(0.23+0.07×F)%rdg.						
TUKHZ <	T≤ IUUKHZ	±(0.3+0.04×F)%rag. ±0.3%f.s.	±(0.6+0.04	×F)%rag.	±(0.6+0.04×F)%rag.						
Active po	wer		500/6		1000/1						
Frequ	ency (f)	Input < 50% f.s.	50%f.s. ≤ Inpu	t < 100%f.s.	100%f.s. ≤ Input						
0.11-	JC	±0.1%rdg. ±0.1%t.s.	±0.1%rdg.	±0.1%f.s.	±0.2%rdg.						
16H7 -	f < 45H7	+0.1%rda +0.1%fs	±0.3% +0.2%	rda. Irda	±0.3%iUg.						
45Hz <	f ≤ 66Hz	±0.1%rdg. ±0.05%f.s.	±0.159	6rdg.	±0.15%rda.						
66Hz <	f ≤ 500Hz	±0.1%rdg. ±0.1%f.s.	±0.2%	rdg.	±0.2%rdg.						
500Hz <	< f ≤ 1kHz	±0.1%rdg. ±0.2%f.s.	±0.3%	rdg.	±0.3%rdg.						
1kHz <	f ≤ 10kHz	±(0.03+0.07×F)%rdg.	±(0.23+0.07	/×F)%rdg.	±(0.23+0.07×F)%rdg.						
10kH	lz < f ≤	±0.2%t.s. ±(0.07×F)%rdg.	±(0.3+0.07	×F)%rdg.	±(0.3+0.07×F)%rdg.						
50kHz <	f ≤ 100kHz	±0.3%1.S. ±(0.6+0.07×F)%rdg. +0.3%f.s.	±(0.9+0.07	×F)%rdg.	±(0.9+0.07×F)%rdg.						
		 Values for f.s. depend 	Values for fis, depend on measurement ranges								
		• "F" in the tables refers to the frequency in kHz.									
		Add ±1mA to DC measurement accuracy for current. Add (-1mA) × (voltage read volta) to DC measurement accuracy for acting a setting accuracy.									
		 Add (± min) × (voltage read value) to DC measurement accuracy for active power. When using the 200mA or 500mA range, add ±0.1% rdg, to current. 									
		and active power for which $1 \text{ kHz} < f \le 10 \text{ kHz}$.									
		 Values for voltage, current, and active power for which 									
		 U.1Hz ≤ t < 10Hz are for reference only. Values for voltage, current, and active power in excess of 220V or 									
		20A for which 10Hz ≤	ich 10Hz \leq f < 16Hz are for reference only.								
		 Values for current and 	d active powe	er in exces	s of 20A for which						
		$500Hz < f \le 50kHz$ are	e for referenc	e only. or in oxees	of 15A for which						
		50 kHz < f \le 100kHz a	re for referen	ce only.	S OF TSA TOF WHICH						
		 Values for voltage and 	d active pow	er in exces	s of 750V for which						
		30 kHz < f ≤ 100 kHz a	re for referen	ce only.							
Guaranteed ac	ccuracy period	1 year									
Post-adjust	tment	6 months									
Conditions	of	Temperature and humidity	· 23°C ±5°C	80% BH (
guarantee	d	Warm-up time	: 30 minutes	, 00 /8 1111	1033						
accuracy		Input	: Sine wave	input, pow	er factor of 1,						
			terminal-to	-ground vo	Itage of OV, after zero						
			wave satisfi	within range	In which the fundamental						
Temperature	characteristic	±0.03% f.s. per °C or less									
Power fac		±0.03% I.S. per C 011	ess	es synchion	ization source conditions						
1 Ower rac	tor effects	±0.1% f.s. or less (45 t	ess o 66 Hz, at p	ower facto	r = 0)						
	tor effects	±0.1% f.s. or less (45 t Internal circuitry voltag	ess o 66 Hz, at p je/current ph	ower facto ase differer	r = 0) nce: ±0.0573°						
Effect of c	tor effects	±0.03% i.s. per C of i ±0.1% f.s. or less (45 t Internal circuitry voltag ±0.02% f.s. or less (6	ess o 66 Hz, at p le/current ph 00 V, 50/60 I	ower facto ase differer Hz, applied	r = 0) nce: ±0.0573° d between input termi-						
Effect of c mode volt	tor effects ommon age	$\pm 0.03\%$ f.s. per C of t $\pm 0.1\%$ f.s. or less (45 t Internal circuitry voltag $\pm 0.02\%$ f.s. or less (6 nals and enclosure) 400.4% DC and 50%	ess o 66 Hz, at p le/current ph 00 V, 50/60 I	ower facto ase differen Hz, applied	ization source conditions r = 0) nce: ±0.0573° d between input termi-						
Effect of c mode volta Effect of e magnetic	tor effects ommon age xternal field	±0.03% i.s. per c thi ±0.1% f.s. or less (45 t Internal circuitry voltag ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f	ess o 66 Hz, at p le/current ph 00 V, 50/60 I 0 Hz magnet s, or less	ower facto ase differen Hz, applied	ization source conditions r = 0) nce: ±0.0573° d between input termi-						
Effect of c mode volta Effect of e magnetic interference	tor effects ommon age xternal field ce	±0.1% f.s. per C 01 ±0.1% f.s. or less (45 th Internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage ±1.5% f.	ess o 66 Hz, at p le/current ph 00 V, 50/60 I 0 Hz magnet s. or less s. or ±10 mA	ower facto ase differen Hz, applied ic field	ization source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less						
Effect of c mode volta Effect of e magnetic interference	tor effects ommon age xternal field ce	±0.3% is. per cont ±0.1% fs. or less (45 till Internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f Active power ::±1.5% f Active power ::±3.0% f	ess o 66 Hz, at p le/current ph 00 V, 50/60 l 0 Hz magnet s. or less s. or ±10 m4 s. or (voltage	ower facto ase differen Hz, applied ic field	zation source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA),						
Effect of c mode volt: Effect of e magnetic interference	tor effects ommon age xternal field ce	±0.0% h.s. per Com ±0.1% f.s. or less (45 t Internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f Active power :±1.5% f Active power :±1.5% f Active power :±1.5% f	ess o 66 Hz, at p le/current ph 00 V, 50/60 l 0 Hz magnet s. or less s. or ±10 m/ s. or (voltage er is greater, fter ipputing 10	ower facto ase differer Hz, applied ic field A, whicheve influence or less	zation source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), surrent direct input terminele)						
Effect of c mode volt Effect of e magnetic interference Magnetiza	tor effects ommon age xternal field ce tion effect	±0.03% hs. per Com ±0.1% fs. or less (45 t Internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f Current :±1.5% f Active power :±3.0% f whichev ±10 mA equivalent or less (a ±10 mA equivalent or less (a	ess o 66 Hz, at p le/current ph o V, 50/60 I O Hz magnet s. or less s. or ±10 mA s. or (voltage, er is greater, fter inputting 100 ess (when in	ower facto ase differer Hz, applied ic field A, whicheve or less D A DC to the putting 50	ization source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel)						
Effect of c mode volt Effect of e interference Magnetiza Adjacent chan	tor effects ommon age xternal field ce tion effect nel input effect	±0.03% hs. per Com ±0.1% fs. or less (45 t Internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage ±1.5% f Current ±1.5% f Current ±1.5% f Under equivalent or lst ±10 mA equivalent or lst ±10 mA equivalent or lst ±10 mA equivalent or lst	ess o 66 Hz, at p le/current ph 00 V, 50/60 I 0 Hz magnet s. or less s. or less s. or ±10 mA s. or (voltage er is greater, fter inputing 100 ess (when in	ower facto ase differen Hz, applied ic field A, whicheve or less A DC to the putting 50	ization source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel) fications						
Effect of c mode volta Effect of e magnetic interference Magnetiza Adjacent chan	tor effects ommon age xternal field ce tion effect nel input effect Curren	±0.03% hs. per Connect ±0.1% fs. or less (45 till Internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage ±1.5% f. Current ±1.5% f. Unde equivalent or less (a ±10 mA equivalent or less (a	ess o 66 Hz, at p le/current ph 00 V, 50/60 I 0 Hz magnet s. or less s. or ±10 m/ s. or (voltage er is greater, fter inputting 100 ess (when in ess (when in construction to a magnetic to	ower facto ase differen Hz, applied ic field A, whicheve or less DADC to the putting 50 nt Speci	ization source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel) fications						
Effect of c mode volt Effect of e magnetic interference Magnetiza Adjacent chan Voltage/	tor effects ommon age xternal field be tion effect relinput effect Curren nent types	±0.03% hs. per Con ±0.1% fs. or less (45 t Internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage ±1.5% f. Current ±1.5% f. Active power :±3.0% f whichev ±10 mA equivalent or less (a ±10 mA equivalent or less (a ±10 mA equivalent or less (a t/ Active Power Mi Rectifiers: AC+DC, DC	ess o 66 Hz, at p le/current ph 00 V, 50/60 I 0 Hz magnet 0 Hz magnet s. or eles s. or ±10 m/ s. or (voltage er is greater, fter inputting 100 ess (when in easureme c, AC, FND, A	ower facto ase differer Hz, applied ic field A, whicheve influence or less 0 A DC to the putting 50 nt Speci (C+DC Um	ization source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel) fications n						
Effect of c mode volt. Effect of e magnetic interference Magnetiza Adjacent chan Voltage/ Measurerr Effective n	tor effects ommon age xternal field ce tion effect nel input effect Curren nent types neasuring	±0.3% i.s. per Con in ±0.1% f.s. or less (45 internal circuitry voltage ±0.02% f.s. or less (6 inals and enclosure) 400 A/m, DC and 50/6 Voltage :=1.5% f Current :=1.5% f Active power :±3.0% f whicheve ±10 mA equivalent or less (a ±10 mA equivalent or less (a	ess o 66 Hz, at p le/current ph 00 V, 50/60 I 0 Hz magnet s. or less s. or st10 mA s. or (voltage er is greater, fter inputting 100 ess (when in easureme c, AC, FND, A 30% of range	ower facto ase differer Hz, applied ic field A, whicheve influence or less IADC to the putting 50 nt Speci (C+DC Um	zation source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel) fications n						
Effect of c mode volt. Effect of e magnetic interference Magnetiza Adjacent chan Voltage / Measuren Effective n range	tor effects ommon age xternal field ce tion effect <i>Curren</i> nent types neasuring	±0.03% I.s. per Con in ±0.1% f.s. or less (45 Internal circuitry voltag ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage :=1.5% f Active power :±3.0% f. whichev ±10 mA equivalent or less (a ±10 mA equivalent or	ess o 66 Hz, at p le/current ph 00 V, 50/60 I 0 Hz magnet s. or less s. or elss s.	ower facto ase differen Hz, applied ic field A, whicheve or less ADC to the n putting 50 nt Speci AC+DC Um e and 100	zation source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel) fications n 0 V RMS value)						
Effect of c mode volt. Effect of e magnetic interference Magnetiza Adjacent chan Voltage / Measuren Effective n range	tor effects ommon age xternal field ce tion effect relinput effect Curren nent types neasuring	±0.3% h.s. per Control 1 ±0.1% f.s. or less (45 t Internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage :::1.5% f 400 rurent :::1.5% f Active power :::1.5% f 40 mAre equivalent or less (a ±10 mA equivalent or less (a ±10 mA equivalent or less (a ±10 mA equivalent or less (a ±10 mA equivalent or less (a ±10 mA equivalent or less (a ±10 mA equivalent or less (a ±10 mA equivalent or less (a ±10 mA equivalent or less (a ±10 mA equivalent or less (a ±10 mA equivalent or less (b ±10 mA equivalent or less (b ±10 mA equivalent or less (b ±10 mA equivalent or less (b Current :: 1% to 1: 10 mA equivalent or less (b Active power :: 1% to 1: 1% to 1: Active power :: 0% to 1: 1% to 1:	ess o 66 Hz, at p le/current ph 00 V, 50/60 1 0 Hz magnet s. or less s. or et 10 mA s. or (voltage er is greater, fter inputting 100 ess (when in easureme c, AC, FND, A 30% of range 0 V peak valu 30% of range 30% of range 30% of range	ower facto ase differen Hz, applied ic field A, whicheve or less ADC to the i putting 50 nt Speci (C+DC Um e and 100 ange	ization source conditions r = 0) cce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel) fications n 0 V RMS value)						
Effect of c mode volt Effect of e magnetic interference Magnetiza Adjacent chan Voltage/ Measurerr Effective n range	tor effects ommon age xternal field be tion effect reliput effect Curren nent types neasuring	±0.3% h.s. per Conn ±0.1% f.s. or less (45 t Internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6/ Voltage :=1.5% f Active power :=1.5% f Active power :=13.0% f ±10 mA equivalent or less (a ±10 mA equivalent or les	ess o 66 Hz, at p le/current ph 00 V, 50/60 l 0 Hz magnet s. or less s. or ±10 m/ s. or (voltage er is greater, fler inputing 100 ess (when in easureme c, AC, FND, A 30% of range 0 V peak valu 30% of range 0% o	ower facto ase differen- Hz, applied ic field A, whicheve or less ADC to the i putting 50 nt Speci (C+DC Um e and 100 be and curr	ization source conditions r = 0) icce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel) fications n 0 V RMS value) ent fall within the						
Effect of c mode volt Effect of e magnetic interference Magnetiza Adjacent chan Voltage/ Measurem Effective n range	tor effects ommon age xternal field ce tion effect Curren nen types neasuring	the second	ess o 66 Hz, at p le/current ph 00 V, 50/60 l 0 Hz magnet s. or less s. or ±10 mA s. or (voltage er is greater, fer inputing 100 ess (when in easureme C, AC, FND, A 30% of range 0 V peak valu 30% of range 0 V peak valu	ower facto ase differen- Hz, applied ic field A, whicheves influence or less A DC to their putting 50 nt Speci (C+DC Um ie and 100 inge ie and curr	ization source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel) fications n 0 V RMS value) ent fall within the						
Effect of c mode volt Effect of e magnetic interference Magnetiza Adjacent chan Voltage/ Measuren Effective n range	tor effects ommon age xternal field ce tion effect Curren nen types neasuring	±0.3% h.s. per Conn ±0.1% f.s. or less (45 tr internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage ±0.1% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage ±1.5% f Active power :±1.5% f Active power :±1.5% f Active power :±10 mA equivalent or less (a ±10 mA equivalent or less (a ±10 mA equivalent or less (a ±10 mA equivalent or less (b Active power : 1% to 1: Active power : 0% to 1 (However, defined wh effective measureme Voltage (Current : 0.5% t Active power : 0.02*	ess o 66 Hz, at p le/current ph 00 V, 50/60 l 0 Hz magnet s. or less s. or ±10 m/ s. or (voltage er is greater, fter inputing 100 ess (when in easureme c, AC, FND, A 30% of range 0 V peak valu 30% of range 0 V peak valu 30% of range 0 V peak valu 30% of range 0 J pea% of the ra	ower facto ase differen- Hz, applied ic field A, whicheve or less 0 ADC to the putting 50 nt Speci (C+DC Um e and 100 e and curr c (zero-suppro	ization source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel) fications n 0 V RMS value) ent fall within the ession when less than 0.5%) remo-suprocession						
Effect of c mode volt Effect of e magnetic interference Magnetiza Adjacent chan Voltage / Measuren Effective n range	tor effects ommon age xternal field ce tion effect Curren nen types neasuring	±0.3% h.s. per E0 mi ±0.1% f.s. or less (45 till internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage ±0.1% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage ±1.5% f. Active power :±1.5% f. ±10 mA equivalent or less (6 ±10 mA equivalent or less (6 ±10 mA equivalent or less (7 Kottive Power Mi Rectifiers: AC+DC, DC Voltage :1% to 1: (however, up to ±150) Current :1% to 1: Active power: 0% to 1: (However, defined wh) effective measureme Voltage/ Current :0.5% t Active power :0% to	ess o 66 Hz, at p le/current ph 00 V, 50/60 I 0 Hz magnet s. or less s. or ±10 m/ s. or (voltage er is greater, fter inputting 100 ess (when in easureme 6, AC, FND, <i>A</i> 30% of range 30% of range 50% of the ra- ent he voltagent range.) o 140% of range ball of the ra- ball of the ra- ne net voltagent range.)	ower facto ase differen- Hz, applied ic field A, whicheve influence or less A DC to the putting 50 nt Speci (C+DC Um e and 100 e ange ge and curr e range (nc using PC)	ization source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), surrent direct input terminals) A to adjacent channel) fications n 0 V RMS value) ent fall within the ession when less than 0.5%) o zero-suppression) ectifier						
Effect of c mode volt Effect of e magnetic interference Magnetiza Adjacent chan Voltage/ Measurerr Effective n range	tor effects ommon age xternal field ce tion effect rourren nei input effect ' Curren nent types neasuring	±0.3% is. per Connect ±0.1% f.s. or less (45 till internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage :=1.5% f. 400 a/m are quivalent or less (a ±10 mA equivalent or less (b voltage : 1% to 1: (however, up to ±150) Current : 1% to 1: Active power : 0% to 11 (However, defined wh effective measureme Voltage/Current : 0.5% to 2% to 15 Active power : 0% to 11 Voltage/Current : 0.5% to 2% to 15 Active power : 0% to 11 Voltage/Current : 0.5% to 2% to 15 Active power : 0% to 11 Voltage/Current : 0.5% to 2% to 15 Active power : 0% to 11 Voltage/Current : 0.5% to 2% to 15	ess o 66 Hz, at p le/current ph 00 V, 50/60 I 0 Hz magnet s. or less s. or ±10 m/ s. or (voltage er is greater, fter inputting 100 ess (when in easureme c, AC, FND, <i>A</i> 30% of range 30% of range 30% of range 30% of range 0 V peak valu 30% of the range 0 v peak valu 0 v p	ower facto ase differen Hz, applied ic field A, whicheve or less A DC to the putting 50 nt Speci (C+DC Um e and 100 e and curr e range (nc using DC i consumptic	ization source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), surrent direct input terminals) A to adjacent channel) fications n 0 V RMS value) ent fall within the ession when less than 0.5%) .zero-suppression) rectifier n (no polarity display)						
Effect of c mode volt Effect of e magnetic interference Magnetiza Adjacent chan Voltage/ Measurem Effective n range Display ra	tor effects ommon age xternal field ce tion effect nel input effect ' Curren' nent types neasuring	±0.3% is. per to in ±0.1% f.s. or less (45 till internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage :±1.5% f. Active power :±3.0% f whichev ±10 mA equivalent or less (a ±10 mA equivalent or less (a ±10 mA equivalent or less (a ±10 mA equivalent or less (b voltage : 1% to 1: (however, up to ±150) Current : 1% to 1: Active power : 0% to 1: (However, defined wh Voltage/Current : 0.5% to Active power : 0% to 1: Voltage/Current : 0.5% to Active power : 0% to Voltage/Current : 0.5% to Active power : 0% to Voltage/Current : 0.5% to Active power : 0.5% to	ess o 66 Hz, at p le/current ph 00 V, 50/60 I 0 Hz magnet s. or less s. or ±10 m/ s. or (voltage er is greater, fter inputting 100 ess (when in easureme c. AC, FND, <i>A</i> 30% of range 30% of range 60% of the voltage nt range.) o 140% of the blayed when blayed when tive: Power - heration or re	ower facto ase differen- tz, applied ic field v, whicheve or less i falluence or less	ization source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel) fications n 0 V RMS value) ent fall within the ession when less than 0.5%) .zero-suppression) rectifier n (no polarity display) power						
Effect of c mode volt Effect of e magnetic interference Magnetiza Adjacent chan Voltage/ Measurem Effective n range Display ra Polarity Voltage/ C	tor effects ommon age xternal field be ttion effect nel input effect (Curren nent types neasuring nge	±0.03 % I.s. per Con in ±0.03 % I.s. per Con in ±0.02% I.s. or less (45 Internal circuitry voltag ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6 Voltage :=11.5% f Active power :=1.5% f Active power :=3.0% f whichev ±10 mA equivalent or less (a ±10 mA equivalen	ess o 66 Hz, at p le/current ph 00 V, 50/60 I 0 Hz magnet s. or less s. or ±10 m/ s. or (voltage er is greater, fter inputting 100 ess (when in easureme c, AC, FND, A 30% of range 60% of the ra- gen the voltage o 140% of range 50% of the ra- ten the voltage o 140% of the ra- bolayed when heration or re- d sum value	ower facto ase differen- tz, applied ic field v, whicheve or less i falluence or less	ization source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel) fications n 0 V RMS value) ent fall within the ession when less than 0.5%) zero-suppression) rectifier on (no polarity display) power n formulas						
Effect of c mode volt Effect of c magnetic interference Magnetiza Adjacent chan Voltage/ Measurem Effective n range Display ra Polarity Voltage/ C Wir	tor effects ommon age xternal field be ttion effect nel input effect (Curren nent types neasuring nge	±0.03 % I.s. per Connection ±0.1% f.s. or less (45 thermal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6/ Voltage :=1.5% f Active power :=1.5% f Active power :=3.0% f whichev ±10 mA equivalent or less (a to classe (current := less (a Active power := 0% to 1 (However, clefined wh effective power := 0% to 1 (Voltage/ Current := less (a Active power + := 0s = : ger tive power channel and	ess o 66 Hz, at p le/current ph 00 V, 50/60 I 0 Hz magnet s. or less s. or ±10 m/ s. or (voltage er is greater, fter inputting 100 ess (when in easureme c, AC, FND, A 30% of range 60% of theragen the voltagent o 140% of range 20% of theragent the voltagent o 140% of theragent b 196% of the collayed when o 196% of theragent b 196% of theragen	ower facto ase differen- tz, applied ic field v, whicheve or less) A DC to the r putting 50 nt Speci (C+DC Um e and 100 e and curr e range (nc consumptic generated calculation P	ization source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel) fications n 0 V RMS value) ent fall within the ession when less than 0.5%) . zero-suppression) ectifier on (no polarity display) power h formulas (Active power)						
Effect of c mode volt Effect of e magnetic: interference Magnetiza Adjacent chan Voltage/ Measuren Effective n range Display ra Polarity Voltage/ C Wir All channels	tor effects ommon age xternal field be tion effect input effect ' Curren neat types neasuring nge current/ Ac ing 1P2W	±0.03 % I.s. per Conn ±0.1% f.s. or less (45 t Internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6i Voltage :=1.5% f Active power :=0% to 1 (However, defined wh effective measureme Voltage/Current := 0.5% t Active power :=0% to 1 (Voltage/Current := 0.5% t Active power :=0% to 1 (Voltage/Current := 0.5% t Active power :=0% to 1 (Xivp power :=1.5% f Active power :=0% to 1 (Xivp power :=1.5% t (Voltage) or 1(Xi) (Voltage) or 1(Xiv) (Xivp (Xivp))	ess o 66 Hz, at p le/current ph 00 V, 50/60 I 0 Hz magnet s. or less s. or stal o m/s. s. or (voltage er is greater, fer inputing 100 ess (when in easureme c, AC, FND, A 30% of range 0 V peak valu 30% of range 0 V peak valu 30% of range 0 10% of the re- ten the voltage nt range.) 0 10% of the re- ten the voltage 0 10% of the re- 0 10% of	ower facto ase differen- Hz, applied ic field A, whicheve or less ADC to the p putting 50 nt Speci AC+DC Um e and 100 e and 100 e ange generated calculation p r r r r r r r r r r	ization source conditions r = 0) nce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel) fications n 0 V RMS value) ent fall within the ession when less than 0.5%) .zero-suppression) rectifier on (no polarity display) power formulas (Active power)						
Effect of c mode volt Effect of e magnetic: interference Magnetiza Adjacent chan Voltage/ Measurerr Effective n range Display ra Polarity Voltage/ C Wir All channels	tor effects ommon age xternal field be tion effect nel input effect / Curren nent types neasuring nge current/Ac ing 1P2W 1P3W	±0.3% h.s. per Conn ±0.1% f.s. or less (45 t Internal circuitry voltage ±0.02% f.s. or less (6 nals and enclosure) 400 A/m, DC and 50/6/ Voltage :=1.5% f Active power :=1% to 1: (however, up to ±150 Current :=1% to 1: (however, up to ±150 Current :=0% to 1: (However, defined wh effective measureme Voltage/Current := 0.5% t Active power :=0% to 1: (However, defined wh effective measureme Voltage/Current := 0.5% t Voltage/	ess o 66 Hz, at p le/current ph 00 V, 50/60 I 0 Hz magnet s. or less s. or ±10 mA s. or (voltage er is greater, far inputing 100 ess (when in easureme c, AC, FND, A 30% of range 0 V peak valu 30% of range 0 Y peak valu 30% of range 0 y peak valu 30% of range 0 y peak valu 0 % of the ra- ten the voltage nt range.) 0 190% of the po 196% of the po 196% of the po 196% of the po 196% of the current)	ower facto ase differen- Hz, applied ic field A, whicheve or less ADC to the or putting 50 nt Speci AC+DC Um be and 100 be and 100 be and 100 be and 200 ceresuppre trange (nc using DC to consumptic generated calculation P(1)	ization source conditions r = 0) rce: ±0.0573° d between input termi- er is greater, or less quantity) × (±10 mA), current direct input terminals) A to adjacent channel) fications n 0 V RMS value) ent fall within the ession when less than 0.5%) zero-suppression) rectifier on (no polarity display) power formulas (Active power)						

Frequency Measurement Specifications

Number of	3				
measurement channels					
Measurement source	Select from U (VHz) or I (AHz) by channel				
Measurement method	Calculated from input waveform period (reciprocal method)				
Measurement range	500 Hz/200 kHz (linked to zero-cross filter)				
Measurement accuracy	±0.1% rdg. ±1 dgt. (0°C to 40°C)				
Effective measuring	0.1 Hz to 100 kHz				
range	For sine wave input that is at least 20% of the measurement source's measurement range.				
	Measurement lower limit frequency setting: 0.1 sec. / 1 sec. / 10 sec.				
Display format	0.1000 Hz to 9.9999 Hz, 9.900 Hz to 99.999 Hz, 99.00 Hz to 999.99 Hz,				
	9900 kHz to 9.9999 kHz, 9.900 kHz to 99.999 kHz, 99.00 kHz to 220.00 kHz				
Annarant Power/ Reactive Power/ Power Factor/ Phase Angle Measurement Specifications					

Apparent rowen neactive rowen rowen action rhase Angle measurement opecifications						
Measurement types	Rectifiers Apparent Power/ Reactive Power/ Power Factor: AC+DC, AC, FND, AC+DC Umn Phase Angle : AC, FND					
Effective measuring range	As per voltage, current, and active power effective measurement ranges.					
Display range	Apparent Power/ Reactive Power : 0% to 196% of the range (no zero-suppression) Power Factor : ±0.0000 to ±1.0000 Phase Angle : +180.00 to -180.00					
Polarity	Reactive Power/ Power Factor/ Phase Angle Polarity is assigned according to the lead/lag relationship of the voltage waveform rising edge and the current waveform rising edge. + : When current lags voltage (no polarity display) - : When current leads voltage					

Power channel and sum value calculation formulas

Wir	ring	S : Apparent power	Q : Reactive power				
All channels	1P2W	$S_{(i)} = U_{(i)} \times I_{(i)}$	$Q_{(i)} = si_{(i)}\sqrt{S_{(i)}^2 - P_{(i)}^2}$				
Sum values	1P3W	Ssum = S(1) + S(2)					
	3P3W	$Ssum = \frac{\sqrt{3}}{2} (S(1) + S(2))$	0				
	3P3W2M	$\sqrt{3}$ (2 , 1 , 2 , 1 , 2)	Qsum = Q(1) + Q(2)				
	3V3A	$Ssum = \frac{1}{3} \left(S(1) + S(2) + S(3) \right)$					
	3P3W3M						
	3P4W	Ssum = S(1) + S(2) + S(3)	Qsum = Q(1) + Q(2) + Q(3)				

(i): Measurement channel

Wiring		λ : Power factor	ϕ : Phase angle				
All channels	1P2W	$\lambda(i) = \mathbf{S}\mathbf{i}(i) \frac{P_{(i)}}{S_{(i)}}$	$\phi_{(i)} = si_{(i)} \cos^{-1}l \lambda_{(i)}l$				
Sum values	1P3W		When Psum > 0				
	3P3W		$\phi_{sum} = Sisum COS^{-1} \lambda sum $				
	3P3W2M	$\lambda_{sum} = si_{sum} \frac{P_{sum}}{P_{sum}}$	(0° to ±90°)				
	3V3A	Ssum Ssum	When P _{sum} ≥0				
	3P3W3M		$\Psi_{sum} = SI_{sum} I 180 - COS^{-1} I \lambda_{sum} I I$ $(+90^{\circ} t_{0} + 180^{\circ})$				
	3P4W		(100 10 1100)				

(i): Measurement channel ; The polarity symbol si_{sum} is acquired from the Q_{sum} symbol.

Voltage Waveform Peak Value / Current Waveform Peak Value Measurement Specifications

Measurement method	Measures the waveform's peak value (for both positive and negative polarity) based on sampled instantaneous voltage values.											
Sampling frequency	Approx.	700 kHz										
Range configuration												
Voltage peak range												
Voltage range	15V	30V		60\	/	15	VO	3	00V		600V	1000V
Voltage peak range	90.000V	/ 180.00)V	360.0	V00	900	.00V	1.8	000kV	3.	6000kV	6.0000kV
Current peak range												
Current range	200mA	500mA		1A	2	2A	5A	1	10A		20A	50A
Current peak range	1.2000A	3.0000A	6.0	A0000	12.0)00A	30.00	00A	60.000)A	120.00/	A 300.00A
Measurement accuracy	Same as when 10 range). when in	s the vol) Hz \leq f Provided excess d	tag ≤ 1 d as	je or o 1 kHz s refei kHz.	curre (f.s renc	ent n .: vo e va	neasu Itage Iue w	pea pea her	nent a ak ran 1 0.1 F	cci ge Iz	uracy a or cur ≤ f < 1	t DC and rent peak 0 Hz and
Effective measuring range	±5% to : ±5% to :	±100% c ±100% c	of vo	oltage urrent	pea pea	ak rai Ik rar	nge (u nge (u	up to up to	o ±150 o ±100)0) A	V) or)	
Display range	±0.3% to less than	ว ±102% า ±0.3%	of are	voltag subje	ie pe ect te	eak r o zer	ange o-sup	or c pre	urrent ssion)	pe	eak rang	ge (values
Voltage Crest Fac	tor/ Cur	rrent Cr	es	t Fac	tor	Mea	asure	eme	ent Sp	be	cificati	ons
Measurement method	Calculat interval f current v	ies value for voltag vaveforn	es i ge a n pi	from a and vo eak va	disp Itag alues	lay v e wa s.	values	s or m p	ice ea eak va	ich alu	n displa es or cu	y update irrent and
Effective measuring range	As per v rent wav	oltage a eform pe	nd eak	voltag value	e w effe	avefe ective	orm p e mea	eak asur	value ement	or ra	curren	t and cur-
Display range	1.0000 te	o 612.00	(n	o pola	rity)							
Synchronized C	ontrol											
Functions	Timing of calculations, display updates, data updates, integration start/stop/reset events, display hold operation, key lock operation, and zero-adjustment operation for the slave PW3336/PW3337 are synchronized with the master PW3336/PW3337.											
Terminal	BNC terr	minal × ⁻	1 (n	ion-isc	olate	d)						
Terminal name	EXT SYN	1C										
I/O settings	Off: Synchronized control function off In : The EXT SYNC terminal is set to input, and a dedicated synchronization signal can be input (slave). Out: The EXT SYNC terminal is set to output, and a dedicated synchronization signal can be output (master)											
Number of units for which synchronized control can be	1 master	r unit and	17	slave	unit	s (tot	al 8 u	units	;)			

3P3W2M

3P3W3M

 $Xsum = \frac{1}{3} \left(X_{(1)} + X_{(2)} + X_{(3)} \right)$

 $Psum = (P_{(1)} + P_{(2)} + P_{(3)})$

3V3A

Sum values

Voltage Ripple Rate / Current Ripple Factor Measurement Specifications

Measurement method	Calculates the AC component (peak to peak [peak width]) as a proportion of the voltage or current DC component
Effective measuring range	As per voltage and voltage waveform peak value or current and cur- rent waveform peak value effective measurement ranges
Display range	0.00[%] to 500.00[%]
Polarity	None

Efficiency Measurement Specifications

Emelency wied	Surement	specim	callor	0				
Measurement method	Calculates the efficiency η [%] from the ratio of active power values for channels and wires							
Wiring modes and	Calculated ba	sed on th	ne AC+E	C rectif	ier active r	ower		
calculation equa-	PW3336 serie	s		,				
tions		.0						
	Wiring (WIRING)	CH1	CH2		Calculati	on form	iulas	
	1P2W × 2	1P2W	1P2W		η1=100 η2=100	× P2 / × P1 /	P1 P2	
	1P3W	1P:	3W					
	3P3W	3P	3W					
	3P3W2M	3P3\	N2M					
	PW3337 serie	s						
	Wiring (WIRING)	CH1	CH2	СНЗ	Calc	ulation	formul	as
	1P2W × 3	1P2W	1P2W	1P2W	η1=100× η2=100×	(P3 / F (P1 / F	≥1 ≥3	
	1P3W & 1P2W	1P;	3W	1P2W	η1=100×	(P3) / (F	⊃sum	
	3P3W & 1P2W	3P:	3W	1P2W	η2=100×	Psum	/ P3	
	3P3W2M		3P3W2N					
	3V3A		3V3A					
	3P3W3M		3P3W3N	1				
	3P4W		3P4W					
	· · · · ·							
Effective measuring range	As per the act	ive powe	er effectiv	/e meas	surement ra	ange.		
Display range	0.00[%] to 200	0.00[%]						
Functional Spec	cifications							
Auto-range	Automatically	changes	the volt	age anc	l current ra	ange fo	r each	wiring
(AUTO)	mode accordi	ng to the	input					
	Range up							
	or whe	n the pea	ik is exce	eded.	ui execcua	100 /0	or the r	ange
	Range dow	Range down						
	: The rar	nge is deo	creased v	vhen inp	ut falls belo	w 15%	of the r	range.
	Howev	er, the rar	nge is not	decrea	sed when th	ne peak	IS exce	eeded
Averaging	Averages the vo		ont active	nower a	nnarent now	or and r	eactive (nower
(AVG)	· The power fac	ctor and p	phase an	gle are d	calculated f	rom ave	eraged	data.
. ,	· Measured va	lues oth	er than p	beak va	lues, powe	er facto	or, freq	uency,
	integrated va	alues, T.A	W, crest	factor, r	ipple rate,	total h	armon	ic dis-
	tortion, and n	iarmonic: imple av	s are ave eraging	eragea.				
	Number of	Number of averaging iterations and display update interval						
	Number of	averagin	a 1	2 5	5 10	25	50	100
	iterations	0	OFF)					
	Display upda	ate interva	al 200ms	400ms -	1s 2s	5s	10s	20s
Scaling	Applies user-o	defined \	/T and (CT ratio	settings to	o meas	ured v	alues.
(VT, CT)	These settings	s can be	configur	ed sepa	arately for e	each wi	iring m	ode.
	VT ratio setting	g range	: OF	F (1.0),	0.1 to 100	0 (settir	ng: 000)0)
1010	CT ratio setting	g range	: 0+	F (1.0),	0.001 to 1	000 (se	tting: ()000)
HOLD	 Stops display 	/ update:	s for all r	neasure	ed values a	ind fixe	s the c	lisplay
(HOLD)	Measurement d	ata acquire	ed by com	municatio	ons is also fix	ed at the	at point	in time.
	 Internal calcula 	ations (inc	luding inf	egration	and integra	ition ela	psed tir	me) will
	continue.							
	Analog outpu	it and wa	aveform (output a	re not held	1.		
Maximum value/	Detects maxi	imum an	a minimi valuos fe	um mea	sured valu	ies as v	Nell as	maxi-
(MAX/MIN HOLD)	peak and hol	ds them	on the d	isplay.	onage and	i cunc	in wav	Clothi
(. For data with	polarity	, display	of the	maximum	value a	and mir	nimum
	value for the	data's a	absolute	values	is held (se	o that b	ooth p	ositive
	and negative	polarity	values a	re show	n). ation and	inteara	ition of	ancad
	time) will con	tinue.	(includin	g integr	ation and	integra		apscu
	· Analog outpu	it and wa	aveform (output a	re not held	ł.		
Zero Adjustment (0 ADJ)	Degausses the rent input offse	e current et.	t input ur	nit DCC	T and then	zeroes	s out th	1e cur-
Key-lock	Disables key	input in	the mea	sureme	nt state, e	xcept f	or the	SHIFT
(KÉY LOCK)	key and KEY L	OCK ke	у.					
Backup	Backs up setti and if a power	ings and outage	integrat occurs.	ion data	a if the inst	rument	is turr	ned off
System Reset	Initializes the	instrume	ent's sett	ings.				
	Communicati	ions-relat	ted settir	igs (cor	nmunicatio	ons spe	ed, ad	ldress,
		neu settii	igs) are	not initia	anzeu.			
megration Mea	surement S	pecitic	auons					
Measurement types	Rectifiers: AC-	+DC, AC	+DC Un	n				
	Current:							
	I lieplaye the re	cult of int	oarotina	ourropt	UNIS VOLUO	data /d	icolov's	voluoe)

Displays the result of integrating current RMS value data (display values) once every display update interval (approx. 200 ms) as an integrated value. Active power:

Active power: Displays the result of integrating active power values by polarity calculated once every cycle for the selected synchronization source as integrated values.

Rectifier: DC Displays the result of integrating instantaneous data obtained by sampling both current and active power by polarity as integrated values (When the active power contains both AC and DC, the DC component will not be integrated)

Integration Measurement Specifications

integration mea	surement opecifications				
Measurement items	Simultaneous integration of the follow	ing 6 parameters for each channe			
	(total of 18 parameters):	0			
	Sum of current integrated values (disp	played as Ah on panel display)			
	Positive current integrated value (disp	layed as Ah+ on panel display)			
	Negative current integrated value (dis	played as Ah- on panel display)			
	Sum of active power integrated values	s (displayed as Wh on panel display			
	Positive active power integrated value	e (displayed as Wh+ on panel displa			
	Negative active power integrated value	e (displayed as Wh- on panel display			
Integration time	1 min. to 10000 hr., settable in 1 mi	n. blocks			
Integration time accuracy	±100 ppm ±1 dgt. (0°C to 40°C)				
Integration	(Current or active power measuremen	t accuracy) + (±0.01% rdg. ±1 dgt			
measurement accuracy		,, , , , , , , , , , , , , , , , , , , ,			
Effective measuring range	Until PEAK OVER U or PEAK OVER	loccurs			
Display resolution	999999 (6 digits \pm decimal point)				
FUNCTIONS	Displaying the integration plaged on the	egration time setting (timer)			
	Additional integration by repeated	ly starting/stopping integration			
	· Backing up integrated values and	the integration elapsed time du			
	ing power outages	0			
	· Stopping integration when power	returns			
External control	Stopping/starting integration and resetting in	tegrated values based on external contro			
Measuring range	Corresponds to the range set for S	TART integretation			
Time Average Curre	nt / Time Average Active Power Mea	asurement Specifications (T.AV)			
Measurement method	Calculates the average by dividing the in	tegrated value by the integration tim			
Measurement method	Calculates the average by dividing the in	itegrated value by the integration tim			
Measurement accuracy	±(Current or active power measureme	nt accuracy) ±(±0.01%rdg. ±1dgt.			
Effective measuring range	As per the current or active power	effective measurement range			
Llormonio Mooo	urament Charifications (bui	It in function)			
narmonic weas	urement Specifications (bui				
Measurement	· Zero-cross simultaneous calculation	on method (separate windows b			
method	channel according to the wiring mo	de)			
	. Uniform thinning between zero-cro	oss events after processing with			
	digital antialiasing filter				
	Interpolation calculations (Lagrange	ge interpolation)			
	EC 61000 4 7:2002 compliant	alis within the 45 Hz to 66 Hz range			
	Sans and overlaps may occur	if the measurement frequency			
	not 50 Hz or 60 Hz	In the measurement nequency			
	When the synchronization frequency f	alls outside the 45 Hz to 66 Hz rang			
	» No gaps or overlap will occur				
Synchronization source	Conforms to synchronization source (SYNC)	for the basic measurement specification			
Management abanala	o synchronization source (o mo)	Tor the basic measurement specification			
ivieasurement channels	3				
Measurement items	Harmonic voltage RMS value	Harmonic voltage content %			
	Harmonic voltage phase angle Harmonic current RMS value				
	Harmonic current content % Harmonic current phase angle				
	Harmonic active power	Harmonic active power content %			
	Harmonic voltage current phase difference	Iotal narmonic voltage distortion			
	Total harmonic current distortion Voltage fundamental waveform				
	Current fundamental waveform Active power fundamental waveform				
	Apparent power fundamental waveform -	Reactive power fundamental waveforr			
	Power factor fundamental wavefor	M un demonstel une referre			
	Interchangel voltage fundamental				
	Interchannel current fundamental	wave phase difference			
	The following parameters can be d	ownloaded as data during PC			
	communication but not displayed:	omiodada do dala daling i o			
	· Harmonic voltage phase angle	Harmonic current phase angle			
	· Harmonic voltage current phase c	lifference			
FET processing word length	32 hits				
Number of EET points	4000				
Number of FFT points	4096				
Window function	Rectangular				
Analysis window width	45 Hz ≤ f < 56 Hz 178	1.57 ms to 222.22 ms (10 cycles			
	56 Hz ≤ f < 66 Hz 181	.82 ms to 214.29 ms (12 cycles)			
	Frequencies other than the above 185	5.92 ms to 214.08 ms			
Data update rate	Depends on window width				
Synchronization	10 Hz to 640 Hz				
frequency range					
Maximum	Cupphropization fragment (1)	Appluoio entre			
analysis order	Synchronization frequency (f) range	Analysis order			
	I I CARACTER IN THE STREET S	EOth			
	10 Hz ≤ f < 45 Hz	30(11			
	$10 \text{ Hz} \le f < 45 \text{ Hz}$ $45 \text{ Hz} \le f < 56 \text{ Hz}$	50th			
	$10 \text{ Hz} \le f < 45 \text{ Hz}$ $45 \text{ Hz} \le f < 56 \text{ Hz}$ $56 \text{ Hz} \le f \le 66 \text{ Hz}$	50th 50th			
	$10 \text{ Hz} \le f < 45 \text{ Hz}$ $45 \text{ Hz} \le f < 56 \text{ Hz}$ $56 \text{ Hz} \le f \le 66 \text{ Hz}$ $66 \text{ Hz} \le f \le 100 \text{ Hz}$	50th 50th 50th			
	$\begin{array}{c} 10 \ \text{Hz} \le f < 45 \ \text{Hz} \\ 45 \ \text{Hz} \le f < 56 \ \text{Hz} \\ 56 \ \text{Hz} \le f \le 66 \ \text{Hz} \\ 66 \ \text{Hz} \le f \le 100 \ \text{Hz} \\ \end{array}$	50th 50th 50th			
	$\begin{array}{l} 10 \ \text{Hz} \leq f < 45 \ \text{Hz} \\ 45 \ \text{Hz} \leq f < 56 \ \text{Hz} \\ 56 \ \text{Hz} \leq f \leq 66 \ \text{Hz} \\ 66 \ \text{Hz} < f \leq 100 \ \text{Hz} \\ 100 \ \text{Hz} < f \leq 200 \ \text{Hz} \\ \end{array}$	50th 50th 50th 50th 40th			
	$\begin{array}{c} 10 \ \text{Hz} \leq \text{f} < 45 \ \text{Hz} \\ 45 \ \text{Hz} \leq \text{f} < 56 \ \text{Hz} \\ 56 \ \text{Hz} \leq \text{f} \leq 66 \ \text{Hz} \\ 66 \ \text{Hz} < \text{f} \leq 100 \ \text{Hz} \\ 100 \ \text{Hz} < \text{f} \leq 200 \ \text{Hz} \\ \hline 200 \ \text{Hz} < \text{f} \leq 300 \ \text{Hz} \\ \hline \end{array}$	50th 50th 50th 50th 40th 25th			
	$\begin{array}{c} 10 \ \text{Hz} \le f < 45 \ \text{Hz} \\ \hline 45 \ \text{Hz} \le f < 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \le f \le 56 \ \text{Hz} \\ \hline 66 \ \text{Hz} < f \le 66 \ \text{Hz} \\ \hline 100 \ \text{Hz} < f \le 200 \ \text{Hz} \\ \hline 100 \ \text{Hz} < f \le 200 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \le 500 \ \text{Hz} \\ \hline \end{array}$	50th 50th 50th 40th 25th 15th			
	$\begin{array}{c} 10 \ \text{Hz} \leq f < 45 \ \text{Hz} \\ \hline 45 \ \text{Hz} \leq f < 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \leq f \leq 56 \ \text{Hz} \\ \hline 66 \ \text{Hz} < f \leq 100 \ \text{Hz} \\ \hline 100 \ \text{Hz} < f \leq 200 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \leq 200 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \leq 500 \ \text{Hz} \\ \hline 500 \ \text{Hz} < f \leq 640 \ \text{Hz} \\ \hline \end{array}$	50th 50th 50th 40th 25th 15th 11th			
Applying and a	$\begin{array}{c} 10 \ \text{Hz} \leq f < 45 \ \text{Hz} \\ \hline 45 \ \text{Hz} \leq f < 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \leq f \leq 56 \ \text{Hz} \\ \hline 66 \ \text{Hz} < f \leq 66 \ \text{Hz} \\ \hline 100 \ \text{Hz} < f \leq 200 \ \text{Hz} \\ \hline 100 \ \text{Hz} < f \leq 200 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \leq 300 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 500 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 600 \ \text{Hz} \\ \hline \end{array}$	50th 50th 50th 40th 25th 15th 11th			
Analysis order upper	$\begin{array}{c} 10 \ \text{Hz} \leq f < 45 \ \text{Hz} \\ \hline 45 \ \text{Hz} \leq f < 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \leq f \leq 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \leq f \leq 56 \ \text{Hz} \\ \hline 66 \ \text{Hz} < f \leq 100 \ \text{Hz} \\ \hline 100 \ \text{Hz} < f \leq 200 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \leq 200 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 500 \ \text{Hz} \\ \hline 500 \ \text{Hz} < f \leq 500 \ \text{Hz} \\ \hline 500 \ \text{Hz} < f \leq 640 \ \text{Hz} \\ \hline 2nd \ \text{to} 50 \text{th} \\ \hline \end{array}$	50th 50th 50th 40th 25th 15th 11th			
Analysis order upper limit setting	$\begin{array}{c} 10 \ \text{Hz} \le f < 45 \ \text{Hz} \\ \hline 45 \ \text{Hz} \le f < 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \le f < 56 \ \text{Hz} \\ \hline 66 \ \text{Hz} < f \le 66 \ \text{Hz} \\ \hline 100 \ \text{Hz} < f \le 200 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \le 300 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \le 500 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \le 640 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \le 640 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \le 640 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \le 640 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \le 640 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \le 640 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \le 640 \ \text{Hz} \\ \hline 500 \ \text{Hz} \\ \hline 500 \ \text{Hz} < f \le 640 \ \text{Hz} \\ \hline 500 \ \text{Hz} = f \le f \\ \hline 100 \ Hz = f \le f \le f \le f \le f \le f \le f \\ \hline 100 \ Hz = f \le f \le f \le f \le f \le f \le f \\ \hline 100 \ Hz = f \le f $	50th 50th 50th 40th 25th 15th 11th			
Analysis order upper limit setting Measurement accuracy		50th 50th 50th 25th 25th 15th 11th			
Analysis order upper limit setting Measurement accuracy		50th 50th 50th 40th 25th 15th 11th			
Analysis order upper limit setting Measurement accuracy	$\begin{array}{c} 10 \ \text{Hz} \leq f < 45 \ \text{Hz} \\ \hline 45 \ \text{Hz} \leq f < 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \leq f \leq 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \leq f \leq 56 \ \text{Hz} \\ \hline 66 \ \text{Hz} < f \leq 66 \ \text{Hz} \\ \hline 100 \ \text{Hz} < f \leq 500 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \leq 300 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 500 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 640 \ \text{Hz} \\ \hline 2nd \ \text{to} \ 50th \\ \hline f.s.: \ Measurement \ range \\ \hline Frequency \ (f) \\ \hline DC \\ \hline \end{array}$	50th 50th 50th 25th 25th 15th 11th Voltage, Current, Active power ±0.4%rdg.±0.2%f.s.			
Analysis order upper limit setting Measurement accuracy	$\begin{array}{c} 10 \ \text{Hz} \leq \text{f} < 45 \ \text{Hz} \\ \hline 45 \ \text{Hz} \leq \text{f} < 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \leq \text{f} \leq 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \leq \text{f} \leq 56 \ \text{Hz} \\ \hline 100 \ \text{Hz} < \text{f} \leq 200 \ \text{Hz} \\ \hline 100 \ \text{Hz} < f \leq 200 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \leq 500 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 500 \ \text{Hz} \\ \hline 500 \ \text{Hz} < f \leq 640 \ \text{Hz} \\ \hline 2nd \ \text{to} 50 \ \text{th} \\ \hline \text{f.s.: Measurement range} \\ \hline \hline Frequency (f) \\ \hline DC \\ \hline 10 \ \text{Hz} < \text{f} < 30 \ \text{Hz} \\ \hline \end{array}$	50th 50th 50th 25th 15th 11th			
Analysis order upper limit setting Measurement accuracy		50th 50th 50th 50th 40th 25th 15th 11th Voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s.			
Analysis order upper limit setting Measurement accuracy	$\begin{array}{c} 10 \ \text{Hz} \leq f < 45 \ \text{Hz} \\ \hline 45 \ \text{Hz} \leq f < 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \leq f < 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \leq f \leq 66 \ \text{Hz} \\ \hline 66 \ \text{Hz} < f \leq 100 \ \text{Hz} \\ \hline 100 \ \text{Hz} < f \leq 200 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \leq 500 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 500 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 640 \ \text{Hz} \\ \hline 2nd \ \text{to} 50th \\ \hline f.s.: \ \text{Measurement range} \\ \hline \hline Frequency (f) \\ \hline DC \\ \hline 10 \ \text{Hz} \leq f < 30 \ \text{Hz} \\ \hline 30 \ \text{Hz} \leq f \leq 400 \ \text{Hz} \\ \hline 30 \ \text{Hz} \leq f \leq 400 \ \text{Hz} \\ \hline \end{array}$	50th 50th 50th 50th 40th 25th 15th 11th Voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±0.3%rdg.±0.1%f.s.			
Analysis order upper limit setting Measurement accuracy	$\begin{array}{c} 10 \ \text{Hz} \leq f < 45 \ \text{Hz} \\ \hline 45 \ \text{Hz} \leq f < 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \leq f \leq 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \leq f \leq 66 \ \text{Hz} \\ \hline 66 \ \text{Hz} < f \leq 66 \ \text{Hz} \\ \hline 100 \ \text{Hz} < f \leq 200 \ \text{Hz} \\ \hline 100 \ \text{Hz} < f \leq 200 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 500 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 500 \ \text{Hz} \\ \hline 500 \ \text{Hz} < f \leq 640 \ \text{Hz} \\ \hline 2nd \ \text{to 50th} \\ \hline \hline f.s.: \ \text{Measurement range} \\ \hline \hline Frequency (f) \\ \hline DC \\ \hline 10 \ \text{Hz} \leq f < 30 \ \text{Hz} \\ \hline 30 \ \text{Hz} \leq f \leq 400 \ \text{Hz} \\ \hline 30 \ \text{Hz} < f \leq 400 \ \text{Hz} \\ \hline 400 \ \text{Hz} < f \leq 1 \ \text{kHz} \\ \hline \end{array}$	50th 50th 50th 50th 25th 15th 11th Voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±0.3%rdg.±0.1%f.s. ±0.4%rdg.±0.2%f.s.			
Analysis order upper limit setting Measurement accuracy		50th 50th 50th 50th 40th 25th 15th 11th Voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.3%rdg.±0.1%f.s. ±0.4%rdg.±0.2%f.s. ±1.0%rdg.±0.5%f.s.			
Analysis order upper limit setting Measurement accuracy	$\begin{array}{c} 10 \ \text{Hz} \leq f < 45 \ \text{Hz} \\ \hline 45 \ \text{Hz} \leq f < 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \leq f \leq 56 \ \text{Hz} \\ \hline 56 \ \text{Hz} \leq f \leq 56 \ \text{Hz} \\ \hline 66 \ \text{Hz} < f \leq 100 \ \text{Hz} \\ \hline 100 \ \text{Hz} < f \leq 100 \ \text{Hz} \\ \hline 200 \ \text{Hz} < f \leq 200 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 500 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 500 \ \text{Hz} \\ \hline 500 \ \text{Hz} < f \leq 640 \ \text{Hz} \\ \hline 2nd \ \text{to} 50 \text{th} \\ \hline f.s.: \ \text{Measurement range} \\ \hline Frequency (f) \\ \hline DC \\ \hline 10 \ \text{Hz} \leq f < 30 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 400 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 400 \ \text{Hz} \\ \hline 300 \ \text{Hz} < f \leq 5 \ \text{kHz} \\ \hline 1 \ \text{kHz} < f \leq 5 \ \text{kHz} \\ \hline 5 \ \text{kHz} < f \leq 8 \ \text{kHz} \\ \hline \end{array}$	50th 50th 50th 50th 40th 25th 15th 11th voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.3%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±1.0%rdg.±0.2%f.s. ±1.0%rdg.±0.5%f.s. ±4.0%rdg.±1.0%f.s			
Analysis order upper limit setting Measurement accuracy		50th 50th 50th 50th 25th 15th 11th Voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±0.3%rdg.±0.1%f.s. ±0.4%rdg.±0.2%f.s. ±1.0%rdg.±0.2%f.s. ±1.0%rdg.±0.2%f.s. ±4.0%rdg.±1.0%f.s.			
Analysis order upper limit setting Measurement accuracy		50th 50th 50th 50th 40th 25th 15th 11th Voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.3%rdg.±0.1%f.s. ±0.4%rdg.±0.2%f.s. ±1.0%rdg.±0.2%f.s. ±1.0%rdg.±0.2%f.s. ±4.0%rdg.±0.2%f.s. ±4.0%rdg.±1.0%f.s. ±0.4%rdg.±1.0%f.s. ±0.4%rdg.±1.0%f.s.			
Analysis order upper limit setting Measurement accuracy	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50th 50th 50th 50th 40th 25th 15th 11th Voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±0.3%rdg.±0.1%f.s. ±0.4%rdg.±0.2%f.s. ±1.0%rdg.±0.5%f.s. ±4.0%rdg.±0.5%f.s. ±4.0%rdg.±1.0%f.s.) x (voltage read value) to active power			
Analysis order upper limit setting Measurement accuracy Display Specific		50th 50th 50th 50th 15th 15th 11th Voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±1.0%rdg.±0.2%f.s. ±1.0%rdg.±0.2%f.s. ±1.0%rdg.±0.5%f.s. ±4.0%rdg.±1.0%f.s.) × (voltage read value) to active power			
Analysis order upper limit setting Measurement accuracy Display Specific Display		50th 50th 50th 50th 40th 25th 15th 11th voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±1.0%rdg.±0.2%f.s. ±1.0%rdg.±0.2%f.s. ±1.0%rdg.±0.2%f.s. ±4.0%rdg.±0.2%f.s. ±4.0%rdg.±1.0%f.s.) x (voltage read value) to active power			
Analysis order upper limit setting Measurement accuracy Display Specific Display Number of display parameters		50th 50th 50th 50th 40th 25th 15th 11th Voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.3%rdg.±0.1%f.s. ±0.4%rdg.±0.2%f.s. ±1.0%rdg.±0.5%f.s. ±4.0%rdg.±1.0%f.s. ±0.4%rdg.±1.0%f.s. ±0.4%rdg.±0.5%f.s. ±4.0%rdg.±1.0%f.s.			
Analysis order upper limit setting Measurement accuracy Display Specific Display Number of display parameters Display resolution		50th 50th 50th 50th 40th 25th 15th 11th Voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±1.0%rdg.±0.2%f.s. ±1.0%rdg.±0.5%f.s. ±4.0%rdg.±1.0%f.s.) × (voltage read value) to active power 0 count			
Analysis order upper limit setting Measurement accuracy Display Specific Display Number of display parameters Display resolution		50th 50th 50th 50th 40th 25th 15th 11th Voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±1.0%rdg.±0.2%f.s. ±1.0%rdg.±0.5%f.s. ±4.0%rdg.±0.5%f.s. ±4.0%rdg.±1.0%f.s.) × (voltage read value) to active power 9 count			
Analysis order upper limit setting Measurement accuracy Display Specific Display Number of display parameters Display resolution Display update rate		50th 50th 50th 50th 15th 15th 11th Voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.3%rdg.±0.2%f.s. ±0.3%rdg.±0.2%f.s. ±1.0%rdg.±0.2%f.s. ±1.0%rdg.±0.2%f.s. ±4.0%rdg.±0.5%f.s. ±4.0%rdg.±1.0%f.s.) x (voltage read value) to active power 0 count 0 count			
Analysis order upper limit setting Measurement accuracy Display Specific Display Number of display parameters Display resolution Display update rate		50th 50th 50th 50th 40th 25th 15th 11th Voltage, Current, Active power ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±0.4%rdg.±0.2%f.s. ±1.0%rdg.±0.5%f.s. ±4.0%rdg.±1.0%f.s. ±0.4%rdg.±1.0%f.s. ±0.4%rdg.±1.0%f.s. ±0.4%rdg.±1.0%f.s. ±0.4%rdg.±1.0%f.s. ±0.4%rdg.±1.0%f.s. ±0.5%f.s. ±0.0%rdg.±1.0%f.s. ±0.0%rdg.±1.0%f.s. b > x (voltage read value) to active power 9 count per sec.) to 20 s (varies with ing)			

External Current Sensor Input Specifications (built-in feature)

Terminal	Isolated BNC terminals, 1 for each channel						
Current sensor type	Off / Type 1 / Type 2						
switching	When set to off, input from the external current sensor input terminal is						
	ignored.						
Current sensor	TYPE1 (100 A to 5000 A sensors)						
options	0000, 0001, 0000	3000, 3001, 3003, 013007-017-027-03					
	TYPE2 (20 A to 1000 A sensors, Power supply is required to use)						
	CT6862-05, CT68	63-05, 9709-05, CT68	65-05, 9272-05,				
	CT6841-05, CT68	CT6841-05, CT6843-05, CT6844-05, CT6845-05, CT6846-05					
Current	Auto / 10 A / 20 A / 5	0 A (range noted on p	anel)				
measurement	User-selectable for	each wiring mode.	Can be read directly by				
range	manually setting the	CT ratio.					
Power range	Depends on the co	mbination of voltage	and current ranges; from				
configuration	60.000W to 15.000M	w (also applies to vA,	var)				
Measurement							
accuracy							
Current, Active power	1 500//	500/6					
Frequency	Input < 50%f.s.	50%f.s. ≤ Input < 100%	5T.S. IUU%T.S. ≤ Input				
DC	±0.2%rdg. ±0.6%t.s	. ±0.2%rdg. ±0.6%t	.s. ±0.8%rdg.				
0.1Hz≤ f <16Hz	±0.2%rdg. ±0.2%f.s	. ±0.4%rdg.	±0.4%rdg.				
16Hz≤ f < 45Hz	±0.2%rdg. ±0.2%f.s	. ±0.4%rdg.	±0.4%rdg.				
$45Hz \le f \le 66Hz$	±0.2%rdg. ±0.1%f.s	±0.3%rdg.	±0.3%rdg.				
66Hz < f ≤ 500Hz	±0.2%rdg. ±0.2%f.s	±0.4%rdg.	±0.4%rdg.				
500Hz < f ≤ 1kHz	±0.2%rdg. ±0.3%f.s	±0.5%rdg.	±0.5%rdg.				
1 kHz < f \leq 10kHz	±5.0%rdg.	±5.0%rdg.	±5.0%rdg.				
10kHz < f ≤ 50kHz							
50kHz < f ≤ 100kHz							
	 •To obtain the current or active power accuracy, add the current sen accuracy to the above current and active power accuracy figures. •The effective measurement range and frequency characterist conform to the current sensor's specifications. •Values for current, and active power for which 0.1 Hz ≤ f < 10 Hz are for reference only. •Values for voltage in excess of 220 V active power for which 						
Temperature	Current, active powe	r					
characteristics	: ±0.08% f.s./°C (instrument temperatur	e coefficient;				
	f.s.: instrument n	neasurement range)					
	Add current sensor t	emperature coefficien	t to above.				
Power factor effects	 Instrument: ±0.15% f.s. or less (45 Hz to 66 Hz with power factor = 0) Internal circuit voltage/current phase difference: ±0.086° Add the current sensor phase accuracy to the internal circuit voltage/current phase difference noted above. 						
Current peak value	· (External current se	nsor input instrument	$accuracy) + (\pm 2.0\% \text{ f.s.})$				
measurement	(f.s.:current peak ran	ige)					
accuracy	· Add the current ser	isor accuracy to the al	bove.				
Harmonic		N.C. 11					
measurement	Frequency	voitage	Current, Active power				
accuracy	DC	±0.4%rdg. ±0.2%t.s.	±0.6%rdg. ±0.8%t.s.				
	10Hz≤ f < 30Hz	±0.4%rdg. ±0.2%f.s.	±0.6%rdg. ±0.4%f.s.				
	30Hz≤ f ≤ 400Hz	±0.3%rdg. ±0.1%f.s.	±0.5%rdg. ±0.3%f.s.				
	400Hz < f ≤ 1kHz	±0.4%rdg. ±0.2%f.s.	±0.6%rdg. ±0.5%f.s.				
	1kHz < f ≤ 5kHz	±1.0%rdg. ±0.5%f.s.	±1.0%rdg. ±5.5%f.s.				
	5kHz < f ≤ 8kHz	±4.0%rdg. ±1.0%f.s.	±2.0%rdg. ±6.0%f.s.				
	f.s.: Fach measurem	ent range					
	•To obtain the current	or active power accurac	y, add the current sensor's				
	accuracy to the above current and active power accuracy figures.						

D/A Output Specifications (PW3336-02/-03 and PW3337-02/-03)

Number of	16
output channels	
Configuration	16-bit D/A converter (polarity + 15 bits)
Output parameters	U1 to U3 (voltage level) or u1 to u3 (instantaneous voltage waveform) (switchable) I1 to I3 (current level) or i1 to i3 (instantaneous current waveform) (switchable) P1 to P3 (active power level) or p1 to p3 (instantaneous power waveform) (switchable) Psum (active power level) or Hi-Psum (high-speed active power level) (switchable) Psum and Hi-Psum output is not available (0 V) when using the 1P2W wiring mode.P12 is output when using 1P3W, 3P3W, or 3P3W2M, and P123 is output when using 3V3A, 3P3W3M, or 3P4W. D/A1 to D/A3 : Select any 3 from channel or sum value for voltage, current, active power, apparent power, reactive power, power factor, phase angle, total harmonic voltage/current distortion, inter-channel voltage/ current fundamental wave phase difference, voltage/current rest factor, time average current/active power, voltage/current ripple rate, frequency, efficiency, current integration, active power integration (harmonic output is not available for individual orders). Hi-P1 to Hi-P3 and Hi-Psum (high-speed active power level); Fixed to AC+DC For other level output, select AC+DC, AC+DC Umn, DC, AC, or fnd.
Output accuracy	 f.s.: Relative to the output voltage rated value for each output parameter Level output (Output parameter measurement accuracy) + (±0.2% f.s.) High-speed active power level output (Output parameter measurement accuracy) + (±0.2% f.s.) Instantaneous waveform output (Output parameter measurement accuracy) + (±1.0% f.s.) Instantaneous voltage, instantaneous current: RMS value level Instantaneous power: Average value level
Output frequency band	Instantaneous waveform output, high-speed active power level output At DC or 10 Hz to 5 kHz, accuracy is as defined above.

Output voltage	Level output					
	time average current/active power, apparent power, reactive pow time average current/active power +2 V DC for +100% of range					
	: ±2 V DC for ±100% of range Power factor					
	: ±2 V I Phase and	DC at ±0.0000, 0 V DC at ±1.0 gle	0000			
	: 0 V DC at 0.00°, ±2 V DC at ±180.00°					
	: + 2 V DC at 100.00%					
	voltage/cu : +2 V f					
	Frequency : Varies	/ s with measured value.				
	+2	V DC per 100 Hz from 0.1000	Hz to 300.00 Hz			
	+2 \	V DC per 10 kHz from 30.001	kHz to 220.00 kHz			
	Efficiency : +2 V I	DC at 200.00%				
	Current int	tegration, active power integra	tion et time)			
	Waveform	Waveform output				
Maximum output voltage	Approx. ±12	V DC				
Output update rate	Level output	200 ma + E0 ma (approv. E tim				
	Update	e rate is unrelated to number of $\frac{1}{2}$	f averaging iterations			
	setting Waveform out	and display hold operation. tput				
	: Approx.	11.4 μs (approx. 87.5 kHz)				
	: Updated	once every cycle for the input	t waveform set			
Response time	as the sy Level output	numronization source.				
	: 0.6 sec. c	or less (when the input changes	abruptly from 0% to 90%,			
	the accu	racy range)	in order to satisfy			
	: 0.2 ms or	tput r less				
	High-speed a	active power level output				
Temperature characteristic	±0.05% f.s./°	C or less				
Output resistance		feeture)				
		tealure)	via oxtornal control			
FUNCTIONS	milegration star	vsiop, integration reset and hold	via external control			
External control	Input signal lev	el: 0 to 5 V (high-speed CMOS le	vel or shorted [Lo]/open [Hi]			
	Start	Functions External control signal External control terminal Start $Hi \rightarrow I \circ$				
	Stop	Stop Lo → Hi START/STOP				
	Hold on	Lo interval of at least 200 ms Hi → Lo	RESET			
	Hold off	Lo → Hi	HOLD			
GP-IB interface	(PW3336-	01/-03, PW3337-01/-03	3)			
Method	IEEE488.1 19	78 compliant; see IEEE488.2	1987 BL1 BB0 D01 DT1 07			
	Remote contr	rol by controller	n∟1, PPU, DC1, D11, C(
Address	00 to 30					
RS-232C interfa	ace (built-in	feature)				
Connector	D-sub 9-pin c	connector × 1	hits: 1 (fixed)			
method	Data bits: 8 (f	ixed), Parity: None	5 5115. T (IIXEU),			
Communication Speed	9600bps/ 384	u by controller 100bps				
LAN interface (h	ouilt-in feat	ure)				
Connector	RJ-45 connec	ctor × 1				
Electrical Specifications	IEEE802.3 co	mpliant				
Protocol	TCP/IP	UBASE-IX (automatic detection	n)			
Functions	HTTP server ((remote operation, firmware up	odates)			
	Dedicated po Remote contr	orts (command control, data tra ol by controller (REMOTE lam	ansfer) o will light up.)			
General Specifi	cations (pro	duct guaranteed for one year)				
Operating environment	Indoors, altitu	ide up to 2000 m (6562-ft.), po	Ilution degree 2			
Operating temperature	0 to 40°C (32	to 104°F), 80% RH or less (no	n-condensating)			
Storage temperature and humidity	-10 to 50°C (1	14 to 122°F) 80% RH or less (r	non-condensating)			
Dielectric strength	4290 Vrms A	C (sensed current: 1 mA)	food and autout to action to			
	Between current	ge input terminals and (case, inter t direct input terminals and (case, in	race, and output terminals) terface, and output terminals)			
Maximum rotod	Between voltag	ge input terminals and current direct	ect input terminals			
voltage to earth	Measurement	category III 600 V (anticipated tr	ansient overvoltage 6000 \			
Maximum input voltors	Measurement of	category II 1000 V (anticipated tr	ansient overvoltage 6000 \			
Maximum input voitage	Between voltage input terminals U: 1000 V, ±1500 Vpeak					
	Between +/- o	current direct input terminals I:	±70 A, ±100 Apeak			
Applicable Standards	Between +/- o Safety : EN610	current direct input terminals I: 010, EMC : EN61326 Class A/ E	±70 A, ±100 Apeak N61000-3-2/ EN61000-3-			
Applicable Standards Rated supply voltage	Between +/- of Safety : EN610 100 VAC to 24	current direct input terminals I: 010, EMC : EN61326 Class A/ E 40 VAC, Rated power supply f	±70 A, ±100 Apeak N61000-3-2/ EN61000-3- requency : 50/60 Hz			

Approx. 305W(12.01") × 132H(5.20") × 256D(10.08") mm (excluding protrusions)

Instruction manual \times 1, Measurement guide \times 1, Power cord \times 1

PW3336 series Approx. 5.2 kg (183.4 oz.) PW3337 series Approx. 5.6 kg (197.5 oz.)

Dimensions

Mass Accessories Current Measurement Options [Type 1] Specifications (Can be connected to the current sensor input terminals on the PW3336/PW3337 series.)

Model	CLAMP ON SENSOR 9660	CLAMP ON SENSOR 9661	CLAMP ON SENSOR 9669	FLEXIBLE CLAMP ON SENSOR CT9667-01	FLEXIBLE CLAMP ON SENSOR CT9667-02	FLEXIBLE CLAMP ON SENSOR CT9667-03
Appearance						
Primary current rating	100A AC	500A AC	1000 A AC		500A/ 5000A AC	
Measurable conductor diameter	Max.q15mm (0.59")	Max.φ46mm (1.81")	Max. φ55 mm(2.17"), 80 (3.15")×20(0.79") mm busbar	Max. φ100mm (3.94")	Max.	Max. φ254mm(10.0")
Basic accuracy	±0.3%rdg.±0.02%f.s. (amplitude) ±1° or less (phase) (At 45 Hz to 66 Hz)	±0.3%rdg.±0.01%f.s. (amplitude) ±0.5° or less (phase) (At 45 Hz to 66 Hz)	±1.0%rdg.±0.01%f.s. (amplitude) ±1° or less (phase) (At 45 Hz to 66 Hz)	±2.0%rdg.±0.3%f.s. (amplitude) ±1° or less (At 45 Hz to 66 Hz)		
Frequency characteristics	±1.0% or less (A	t 40Hz to 5kHz)	±2% or less (At 40Hz to 5kHz)) ±3dB or less (At 10 Hz to 20kHz)		lkHz)
Operating Temperature		0 to 50°C (32 to 122°F),		-25 to 65°C (-13 to 149°F) -10 to 50°C (-		-10 to 50°C (14 to 122°F)
Effect of conductor position	Within ±0.5% (dev	iation from center)	Within ±1.5% (deviation from center)	Within ±3% (deviation from center)		
Effect of external electromagnetic field	0.1A equival (400A/r	lent or lower n,55Hz)	1A equivalent or lower (400A/m, 55Hz)	1.5% f.s. or lower (400A/m, 55Hz)		
Maximum rated voltage to earth	CAT III 3	800Vrms	CATIII 600Vrms	CATIII 1000 Vrms, CATIV 600 Vrms) Vrms
Dimensions	46W(1.81")×135H(5.31") ×21D(0.83")mm Cable length: 3 m (9.84 ft)	78W(3.07")×152H(5.98") ×42D(1.65")mm Cable length: 3 m (9.84 ft)	99.5W (3.92") × 188H (7.40") × 42D (1.65") mm Cable length: 3 m (9.84 ft)	Circuit box: 35W (1.38") × 120.5H (4.74") × 34D (1.34") r Cable length: 2m (between flexible loop and circuit box), 1m (or		34D (1.34") mm, it box), 1m (output cable)
Mass	230g(8.1oz.)	380g(13.4oz.)	590g (20.8 oz.)	280 g (9.9oz.)	280 g (9.9oz.)	470 g (4.9 oz.)
Power supply	_		_	LR6 alkaline battery x2, or AC Adapter 9445-02/ 9445-03 (sold sepa		or d separately)

Current Measurement Options [Type 2] Specifications (Requires Sensor Unit CT9555 or CT9557, and Connection Cable L9217.)

Model	AC/DC CURRENT PROBE CT6841-05	AC/DC CURRENT PROBE CT6843-05	AC/DC CURRENT PROBE CT6844-05	AC/DC CURRENT PROBE CT6845-05	AC/DC CURRENT PROBE CT6846-05
Appearance			٩		
Rated primary current	20 A AC/DC	200 A AC/DC	500 A AC/DC	500 A AC/DC	1000 A AC/DC
Frequency band	DC to 1 MHz	DC to 500 kHz	DC to 200 kHz	DC to 100 kHz	DC to 20 kHz
Diameter of measurable conductors	Max.φ 20 mm (0.79") (insulated conductor)	Max.φ 20 mm (0.79") (insulated conductor)	Max.φ 20 mm (0.79") (insulated conductor)	Max.φ 50 mm (1.97") (insulated conductor)	Max.φ 50 mm (1.97") (insulated conductor)
Basic accuracy (At DC)	±0.3% rdg. ±0.05% f.s. (amplitude)	±0.3% rdg. ±0.02% f.s.(amplitude)	±0.3% rdg. ±0.02% f.s. (amplitude)	±0.3% rdg. ±0.02% f.s. (amplitude)	±0.3% rdg. ±0.02% f.s. (amplitude)
Basic accuracy (At DC < f ≤ 100 Hz)	±0.3% rdg. ±0.01% f.s. (amplitude) ±0.1° (phase)	±0.3% rdg. ±0.01% f.s. (amplitude) ±0.1° (phase)	±0.3% rdg. ±0.01% f.s. (amplitude) ±0.1° (phase)	±0.3% rdg. ±0.01% f.s. (amplitude) ±0.1° (phase)	±0.3% rdg. ±0.01% f.s. (amplitude) ±0.1° (phase)
Frequency characteristics (Amplitude)	to 500 Hz: ±0.3% rdg. ±0.02% f.s. to 1 kHz: ±0.5% rdg. ±0.02% f.s. to 10 kHz: ±1.5% rdg. ±0.02% f.s. to 100 kHz: ±5.0% rdg. ±0.05% f.s. to 11 MHz: ±30% rdg. ±0.05% f.s. (Includes derating characteristics)	to 500 Hz: ±0.3% rdg. ±0.02% f.s. to 1 kHz: ±0.5% rdg. ±0.02% f.s. to 10 kHz: ±1.5% rdg. ±0.02% f.s. to 50 kHz: ±5.0% rdg. ±0.02% f.s. to 50 kHz: ±30% rdg. ±0.02% f.s. to 500 kHz: ±30% rdg. ±0.02% f.s. to 500 kHz: ±30% rdg. ±0.02% f.s.	to 500 Hz: ±0.3% rdg. ±0.02% fs. to 1 kHz: ±0.5% rdg. ±0.02% fs. to 10 kHz: ±1.5% rdg. ±0.02% fs. to 50 kHz: ±5.0% rdg. ±0.02% fs. to 200 kHz: ±30% rdg. ±0.02% fs. (Includes derating characteristics) *1.5% rdg. ±0.05% fs.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	to 500 Hz: ±0.5% rdg. ±0.02% f.s. to 1 kHz: ±1.0% rdg. ±0.02% f.s. to 5 kHz: ±2.0% rdg. ±0.02% f.s. to 10 kHz: ±5.0% rdg. ±0.05% f.s. to 20 kHz: ±30% rdg. ±0.10% f.s. (Includes derating characteristics)
Operating Temperature	-40°C to 85°C (-40°F to 185°F)	-40°C to 85°C (-40°F to 185°F)	-40°C to 85°C (-40°F to 185°F)	-40°C to 85°C (-40°F to 185°F)	-40°C to 85°C (-40°F to 185°F)
Effect of conductor position	Within ±0.1% rdg. (DC to 100 Hz)	Within ±0.1% rdg. (DC to 100 Hz)	Within ±0.1% rdg. (DC to 100 Hz)	Within ±0.2% rdg. (DC to 100 Hz)	Within ±0.2% rdg. (50/ 60 Hz)
Effect of external magnetic fields	50 mA equivalent or lower (400 A/m, 60 Hz and DC)	50 mA equivalent or lower (400 A/m, 60 Hz and DC)	100 mA equivalent or lower (400 A/m, 60 Hz and DC)	150 mA equivalent or lower (400 A/m, 60 Hz and DC)	150 mA equivalent or lower (400 A/m, 60 Hz and DC)
Dimensions	153W (6.02") × 67H (2.64") × 25D (0.98") mm Cable length: 3 m (9.84 ft)	153W (6.02") × 67H (2.64") × 25D (0.98") mm Cable length: 3 m (9.84 ft)	153 (6.02") W × 67 (2.64") H × 25 (0.98") D mm Cable length: 3 m (9.84 ft)	238 (9.37") W × 116 (4.57") H × 35 (1.38") D mm Cable length: 3 m (9.84 ft)	238 (9.37") W × 116 (4.57") H × 35 (1.38") D mm Cable length: 3 m (9.84 ft)
Mass	350 g (12.3 oz)	370 g (13.1 oz)	400 g (14.1 oz)	860 g (30.3 oz)	990 g (34.9)
Power supply	SENSOR UNIT CT9555 or CT9557	SENSOR UNIT CT9555 or CT9557	SENSOR UNIT CT9555 or CT9557	SENSOR UNIT CT9555 or CT9557	SENSOR UNIT CT9555 or CT9557

Model	AC/DC CURRENT SENSOR CT6862-05	AC/DC CURRENT SENSOR CT6863-05	AC/DC CURRENT SENSOR 9709-05	AC/DC CURRENT SENSOR CT6865-05	CLAMP ON SENSOR 9272-05
Appearance					
Rated primary current	50 A AC/DC	200 A AC/DC	500 A AC/DC	1000 A AC/DC	20A/200A AC
Frequency band	DC to 1 MHz	DC to 500 kHz	DC to 100 kHz	DC to 20 kHz	1 Hz to 100 kHz
Diameter of measurable conductors	Max.φ 24mm (0.94")	Max.φ 24 mm (0.94")	Max.φ 36 mm (1.42")	Max.ø 36 mm (1.42")	Max.φ 46mm (1.81")
Basic accuracy	±0.05 % rdg.±0.01 % f.s. (amplitude) ±0.2° (phase, not defined for DC) (At DC and 16 Hz to 400 Hz)	±0.05 % rdg.±0.01 % f.s. (amplitude) ±0.2° (phase, not defined for DC) (At DC and 16 Hz to 400 Hz)	±0.05 % rdg.±0.01 % f.s. (amplitude) ±0.2° (phase, not defined for DC) (At DC and 45 Hz to 66 Hz)	±0.05 % rdg.±0.01 % f.s. (amplitude) ±0.2° (phase, not defined for DC) (At DC and 16 Hz to 66 Hz)	±0.3 % rdg.±0.01 % f.s. (amplitude) ±0.2° (phase) (At 45 Hz to 66 Hz)
Frequency characteristics (Amplitude)	to 16 Hz: ±0.1% rdg. ±0.02% f.s. 400Hz to 1kHz: ±0.2% rdg. ±0.02% f.s. to 50 kHz: ±1.0% rdg. ±0.02% f.s. to 100 kHz: ±2.0% rdg. ±0.05% f.s. to 1 MHz: ±30% rdg. ±0.05% f.s. (Includes derating characteristics)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	to 16 Hz: ±0.1% rdg. ±0.02% f.s. 66 Hz to 100 Hz: ±0.5% rdg. ±0.02% f.s. to 500 Hz: ±1.0% rdg. ±0.02% f.s. to 5 kHz: ±5.0% rdg. ±0.05% f.s. to 20 KHz: ±30% rdg. ±0.1% f.s. (Includes derating characteristics)	1 Hz to 10Hz: ±2.0% rdg. ±0.10% f.s. to 45Hz: ±0.5% rdg. ±0.02% f.s. 66Hz to 5kHz: ±1.0% rdg. ±0.05% f.s. to 50kHz: ±5.0% rdg. ±0.10% f.s. to 100kHz: ±30% rdg. ±0.10% f.s. (Includes derating characteristics)
Operating Temperature	-30°C to 85°C (-22°F to 185°F)	-30°C to 85°C (-22°F to 185°F)	0°C to 50°C (32°F to 122°F)	-30°C to 85°C (-22°F to 185°F)	0°C to 50°C (-32°F to 122°F)
Effect of conductor position	Within ±0.01% rdg. (DC to 100 Hz)	Within ±0.01% rdg. (DC to 100 Hz)	Within ±0.05% rdg. (DC)	Within ±0.05% rdg. (50/60 Hz)	Within ±0.2%rdg. (55Hz)
Effect of external magnetic fields	10 mA equivalent or lower (400 A/m, 60 Hz and DC) (400 A/m, 60 Hz and DC)		50 mA equivalent or lower (400 A/m, 60 Hz and DC)	200 mA equivalent or lower (400 A/m, 60 Hz and DC)	100 mA equivalent or lower (400 A/m, 60 Hz)
Dimensions	70W (2.76") × 100H (3. Cable length	.94") × 53D (2.09") mm n: 3 m (9.84 ft)	160W (6.30") × 112H (4 Cable length	4.41") × 50D (1.97") mm n: 3 m (9.84 ft)	78W(3.07")×188H(7.40")×35D(1.38")mm Cable length: 3 m (9.84 ft)
Mass	340 g (12.0 oz.)	350 g (12.3 oz.)	850 g (30.0 oz.)	980 g (35.3 oz)	430g (15.2 oz.)
Power supply	SENSOR UNIT CT9555 or CT9557	SENSOR UNIT CT9555 or CT9557	SENSOR UNIT CT9555 or CT9557	SENSOR UNIT CT9555 or CT9557	SENSOR UNIT CT9555 or CT9557

ne 2 Current Sensor Options

Type 2 Current 3	Sensor Options				Type 2 Current Sensor Connection Diagram
	SENSOR UNIT CT9555	SENSOR UNIT CT9557		Connection Cord	Power
Appearance	11+ Q.	With additive output function	Appearance	L9217	Current Sensor
Number of available sensors	1	4		•	
Compatible current	CT6862-05, CT6863-05, 9709-05, CT6865-05, 9272-05,		Cord length	1.6 m (5.25 ft) length	
sensors	CT6841-05, CT6843-05, CT68-	41-05, CT6843-05, CT6844-05, CT6845-05, CT6846-05		Isolated BNC to	
Power supply	100 to 240 V AC		Terminais	isolated BNC	

Type 2 Current Sensor Connection Diagram

Model : POWER METER PW3336

/LAN/ /RS-232C/ GP-IB/ CE True RMS Model No. (Order Code) (Note) PW3336 (2ch) PW3336-01 (2ch, with GP-IB)

(2ch, with D/A output) PW3336-02 PW3336-03 (2ch, with GP-IB, D/A output)

Accessories: Instruction manual ×1, Measurement guide ×1, Power cord ×1

Options

Current measurement options [Type 1] Can be directly connected to the current sensor input terminals on the PW3336/ PW3337 series CLAMP ON SENSOR 9660 CLAMP ON SENSOR 9669

2LAMP ON SENSOR 9660 100 A AC, φ15 mm(0.59°), 40 Hz to 5 kHz ±0.3%ordg±0.02% f.s. (Amplitude accuracy 45 Hz to 66 Hz) ±1° or less (Phase accuracy 45 Hz to 66 Hz)

CLAMP ON SENSOR 9661 500 A AC, 946 mm(1.81"), 40 Hz to 5 kHz ±0.3%rdg.±0.01%f.s. (Amplitude accuracy 45 Hz to 66 Hz) ±0.5° or less (Phase accuracy 45 Hz to 66 Hz)

1000 A AC, ϕ S5mm(02.17"), $80 \times 20 \text{ mm}$ (3.15" \times 0.79") busbar, 40 Hz to 5 kHz $\pm 1.0\%$ rdg, $\pm 0.01\%$ f.s. (Amplitude accuracy 45 Hz to 66 Hz) $\pm 1^{\circ}$ or less (Phase accuracy 45 Hz to 66 Hz)

(3ch, with GP-IB)

Accessories: Instruction manual ×1, Measurement guide ×1, Power cord ×1

(3ch, with D/A output)

(3ch, with GP-IB, D/A output)

U

(3ch)

Model No. (Order Code) (Note)

PW3337

PW3337-01

PW3337-02

PW3337-03

Model : POWER METER PW3337

/LAN/

RS-232C/

/GP-IB/

CE

True RMS

CLAMP ON SENSOR CT9667-01, CT9667-02, CT9667-03 500 A /5000 A AC Switchable, φ 100mm to φ 54 mm (3.94" to 10"), 10 Hz to 20 kHz \pm 2.0%rdg \pm 0.3%f.s. (Amplitude accuracy 45 Hz to 66 Hz) \pm 1° or less (Phase accuracy 45 Hz to 66 Hz) Power supply : LR6 alkaline battery ×2, or AC Adapter (option) Option : AC ADAPTER 9445-02 (universal 100 V to 240 VAC /for USA)

AC ADAPTER 9445-03 (universal 100 V to 240 VAC /for Europe)

Current measurement options [Type 2] Requires SENSOR UNIT CT9555 or CT9557, and CONNECTION CORD L9217 to be connected to the current sensor input terminals on the PW3336/ PW3337 series

200 A or lower

AC/DC CURRENT SENSOR CT6862-05 50 A AC/DC, pass-through type, ϕ 24 mm(0,94"), DC to 1 MHz ±0.05%rdg ±0.01%f.s. (Amplitude accuracy 16 Hz to 400 Hz) ±0.2° or less (Phase accuracy 16 Hz to 400 Hz) Power supply : SENSOR UNIT CT9555 or CT9557 (option)

AC/DC CURRENT SENSOR CT6863-05

200 A AC/DC, pass-through type, φ 24 mm(0.94"), DC to 500 kHz ±0.05%rdg.±0.01%f.s. (Amplitude accuracy 16 Hz to 400 Hz) ±0.2° or less (Phase accuracy 16 Hz to 400 Hz) Power supply : SENSOR UNIT CT9555 or CT9557 (option)

AC/DC CURRENT PROBE CT6841-05 20 A AC/DC, clamp-on type, $\phi 20~mm(0.79"),$ DC to 1 MHz $\pm 0.3\% rdg.\pm 0.01\% f.s.$ (Amplitude accuracy DC $< f \le 100$ Hz)

 $\pm 0.1^{\circ}$ or less (Phase accuracy DC < f ≤ 100 Hz) Power supply : SENSOR UNIT CT9555 or CT9557 (option)

AC/DC CURRENT PROBE CT6843-05

AC/DC CORRENT PROBE C10843-05 200 A AC/DC, clamp-on type, ϕ 20 mm(0.79°), DC to 500 kHz \pm 0.3%rdg. \pm 0.1%rf.s. (Amplitude accuracy DC < f \leq 100 Hz) \pm 0.1° or less (Phase accuracy DC < f \leq 100 Hz) Power supply : SENSOR UNIT CT9555 or CT9557 (option)

CLAMP ON SENSOR 9272-05 (Scheduled for release in 2017) 20 A/ 200 A AC Switchable, clamp-on type, \u03c646 mm(1.81"), 1 Hz to 100 kHz

±0.3%rdg.±0.01%f.s. (Amplitude accuracy 45 Hz to 66 Hz) ±0.2° or less (Phase accuracy 45 Hz to 66 Hz) Power supply : SENSOR UNIT CT9555 or CT9557 (option)

Type 2 Current sensor options

SENSOR UNIT CT9555 Power supply : 100 V to 240 V AC (50Hz/ 60Hz)

Four Sensors can be used. With additive output function Power supply: 100 V to 240 V AC (50Hz/ 60Hz)

Communications and control options

RS-232C CABLE

HIOKI E.E. CORPORATION

LAN CABLE 9642

Note: Company names and Product names appearing in this catalog are trademarks or registered trademarks of various companies

HIOKI SINGAPORE PTE. LTD. TEL +65-6634-7677 FAX +65-6634-7477 E-mail: info-sg@hioki.com.sg

9638 Cable length: 1.8 m (5.91 ft) 9pin to 25pin

> HIOKI (Shanghai) SALES & TRADING CO., LTD. TEL +86-21-63910090 FAX +86-21-63910360 http://www.hioki.cn / E-mail: info@hioki.com.cn

TEL +82-2-2183-8847 FAX +82-2-2183-3360 E-mail: info-kr@hioki.co.jp

HIOKI KOREA CO., LTD.

CONNECTION CORD

For synchronized control Cable length: 1.5 m (4.92 ft). metal BNC to metal BNC

HEADQUARTERS

81 Koizumi, Ueda, Nagano, 386-1192, Japan TEL +81-268-28-0562 FAX +81-268-28-0568 http://www.hioki.com / E-mail: os-com@hioki.co.jp

HIOKI USA CORPORATION

TEL +1-609-409-9109 FAX +1-609-409-9108 http://www.hiokiusa.com / E-mail: hioki@hiokiusa.com

All information correct as of Nov. 25, 2016. All specifications are subject to change without notice.

500 A or lower

500 A AC/DC, pass-through type, $\varphi 36$ mm(1.42"), DC to 100 kHz $\pm 0.05\% dg \pm 0.01\% f.s.$ (Amplitude accuracy 45 Hz to 66 Hz) $\pm 0.2^{\circ}$ or less (Phase accuracy 45 Hz to 66 Hz) Power supply : SENSOR UNIT CT9555 or CT9557 (option)

AC/DC CURRENT SENSOR 9709-05

AC/DC CURRENT PROBE CT6844-05

$\begin{array}{l} \pm 0.00 \ \text{Ac/DC}, \ \text{clamp-on type}, \ \varphi 20 \ \text{mm}(0.79^{\circ}), \ \text{DC to } 200 \ \text{kHz} \\ \pm 0.3\% \text{rdg}, \pm 0.01\% \text{f.s.} \ (\text{Amplitude accuracy } \ \text{DC} < \text{f} \le 100 \ \text{Hz}) \\ \pm 0.1^\circ \ \text{or less} \ (\text{Phase accuracy } \ \text{DC} < \text{f} \le 100 \ \text{Hz}) \\ \end{array}$ Power supply : SENSOR UNIT CT9555 or CT9557 (option) AC/DC CURRENT PROBE CT6845-05

500 A AC/DC, clamp-on type, $\phi50$ mm(1.97"), DC to 100 kHz $\pm0.3\%$ rdg. $\pm0.01\%$ f.s. (Amplitude accuracy $\,DC < f \le 100$ Hz) $\pm 0.1^{\circ}$ or less (Phase accuracy DC < f ≤ 100 Hz) Power supply : SENSOR UNIT CT9555 or CT9557 (option)

AC/DC CURRENT SENSOR CT6865-05

1000 A AC/DC, pass-through type, φ36 mm(1.42"), DC to 20 kHz ±0.05%rdg.±0.01%f.s. (Amplitude accuracy 16 Hz to 66 Hz) ±0.2° or less (Phase accuracy 16 Hz to 66 Hz) Power supply : SENSOR UNIT CT9555 or CT9557 (option) AC/DC CURRENT PROBE CT6846-05

 $\begin{array}{l} 1000 \ A \ AC/DC, \ clamp-on \ type, \ \varphi 50 \ mm(1.97''), \ DC \ to \ 20 \ kHz \\ \pm 0.3\% \ rdg. \pm 0.01\% \ f.s. \ (Amplitude \ accuracy \ DC \ < \ f \le 100 \ Hz) \\ \pm 0.1^\circ \ or \ less \ (Phase \ accuracy \ DC \ < \ f \le 100 \ Hz) \end{array}$ Power supply : SENSOR UNIT CT9555 or CT9557 (option)

> CONNECTION CORD L9217 For sensor output,

Isolated BNC to isolated BNC Cord length: 1.6 m (5.25 ft) length

Cable length: 5 m (16.41 ft)

supplied with straight to cross conversion cable

DISTRIBUTED BY

